-
Notifications
You must be signed in to change notification settings - Fork 32
/
tvqa_dataset.py
299 lines (259 loc) · 11.6 KB
/
tvqa_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
__author__ = "Jie Lei"
import h5py
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
from tqdm import tqdm
from utils import load_pickle, save_pickle, load_json, files_exist
class TVQADataset(Dataset):
def __init__(self, opt, mode="train"):
self.raw_train = load_json(opt.train_path)
self.raw_test = load_json(opt.test_path)
self.raw_valid = load_json(opt.valid_path)
self.vcpt_dict = load_pickle(opt.vcpt_path)
self.vfeat_load = opt.vid_feat_flag
if self.vfeat_load:
self.vid_h5 = h5py.File(opt.vid_feat_path, "r", driver=opt.h5driver)
self.glove_embedding_path = opt.glove_path
self.normalize_v = opt.normalize_v
self.with_ts = opt.with_ts
self.mode = mode
self.cur_data_dict = self.get_cur_dict()
# set word embedding / vocabulary
self.word2idx_path = opt.word2idx_path
self.idx2word_path = opt.idx2word_path
self.vocab_embedding_path = opt.vocab_embedding_path
self.embedding_dim = opt.embedding_size
self.word2idx = {"<pad>": 0, "<unk>": 1, "<eos>": 2}
self.idx2word = {0: "<pad>", 1: "<unk>", 2: "<eos>"}
self.offset = len(self.word2idx)
# set entry keys
if self.with_ts:
self.text_keys = ["q", "a0", "a1", "a2", "a3", "a4", "located_sub_text"]
else:
self.text_keys = ["q", "a0", "a1", "a2", "a3", "a4", "sub_text"]
self.vcpt_key = "vcpt"
self.label_key = "answer_idx"
self.qid_key = "qid"
self.vid_name_key = "vid_name"
self.located_frm_key = "located_frame"
for k in self.text_keys + [self.vcpt_key, self.qid_key, self.vid_name_key]:
if k == "vcpt":
continue
assert k in self.raw_valid[0].keys()
# build/load vocabulary
if not files_exist([self.word2idx_path, self.idx2word_path, self.vocab_embedding_path]):
print("\nNo cache founded.")
self.build_word_vocabulary(word_count_threshold=opt.word_count_threshold)
else:
print("\nLoading cache ...")
self.word2idx = load_pickle(self.word2idx_path)
self.idx2word = load_pickle(self.idx2word_path)
self.vocab_embedding = load_pickle(self.vocab_embedding_path)
def set_mode(self, mode):
self.mode = mode
self.cur_data_dict = self.get_cur_dict()
def get_cur_dict(self):
if self.mode == 'train':
return self.raw_train
elif self.mode == 'valid':
return self.raw_valid
elif self.mode == 'test':
return self.raw_test
def __len__(self):
return len(self.cur_data_dict)
def __getitem__(self, index):
items = []
if self.with_ts:
cur_start, cur_end = self.cur_data_dict[index][self.located_frm_key]
cur_vid_name = self.cur_data_dict[index][self.vid_name_key]
# add text keys
for k in self.text_keys:
items.append(self.numericalize(self.cur_data_dict[index][k]))
# add vcpt
if self.with_ts:
cur_vis_sen = self.vcpt_dict[cur_vid_name][cur_start:cur_end + 1]
else:
cur_vis_sen = self.vcpt_dict[cur_vid_name]
cur_vis_sen = " , ".join(cur_vis_sen)
items.append(self.numericalize_vcpt(cur_vis_sen))
# add other keys
if self.mode == 'test':
items.append(666) # this value will not be used
else:
items.append(int(self.cur_data_dict[index][self.label_key]))
for k in [self.qid_key]:
items.append(self.cur_data_dict[index][k])
items.append(cur_vid_name)
# add visual feature
if self.vfeat_load:
if self.with_ts:
cur_vid_feat = torch.from_numpy(self.vid_h5[cur_vid_name][cur_start:cur_end])
else: # handled by vid_path
cur_vid_feat = torch.from_numpy(self.vid_h5[cur_vid_name][:480])
if self.normalize_v:
cur_vid_feat = nn.functional.normalize(cur_vid_feat, p=2, dim=1)
else:
cur_vid_feat = torch.zeros([2, 2]) # dummy placeholder
items.append(cur_vid_feat)
return items
@classmethod
def line_to_words(cls, line, eos=True, downcase=True):
eos_word = "<eos>"
words = line.lower().split() if downcase else line.split()
# !!!! remove comma here, since they are too many of them
words = [w for w in words if w != ","]
words = words + [eos_word] if eos else words
return words
def numericalize(self, sentence, eos=True):
"""convert words to indices"""
sentence_indices = [self.word2idx[w] if w in self.word2idx else self.word2idx["<unk>"]
for w in self.line_to_words(sentence, eos=eos)] # 1 is <unk>, unknown
return sentence_indices
def numericalize_vcpt(self, vcpt_sentence):
"""convert words to indices, additionally removes duplicated attr-object pairs"""
attr_obj_pairs = vcpt_sentence.lower().split(",") # comma is also removed
unique_pairs = []
for pair in attr_obj_pairs:
if pair not in unique_pairs:
unique_pairs.append(pair)
words = []
for pair in unique_pairs:
words.extend(pair.split())
words.append("<eos>")
sentence_indices = [self.word2idx[w] if w in self.word2idx else self.word2idx["<unk>"]
for w in words]
return sentence_indices
@classmethod
def load_glove(cls, filename):
""" Load glove embeddings into a python dict
returns { word (str) : vector_embedding (torch.FloatTensor) }"""
glove = {}
with open(filename) as f:
for line in f.readlines():
values = line.strip("\n").split(" ") # space separator
word = values[0]
vector = np.asarray([float(e) for e in values[1:]])
glove[word] = vector
return glove
def build_word_vocabulary(self, word_count_threshold=0):
"""borrowed this implementation from @karpathy's neuraltalk."""
print("Building word vocabulary starts.\n")
all_sentences = []
for k in self.text_keys:
all_sentences.extend([ele[k] for ele in self.raw_train])
word_counts = {}
for sentence in all_sentences:
for w in self.line_to_words(sentence, eos=False, downcase=True):
word_counts[w] = word_counts.get(w, 0) + 1
vocab = [w for w in word_counts if word_counts[w] >= word_count_threshold and w not in self.word2idx.keys()]
print("Vocabulary Size %d (<pad> <unk> <eos> excluded) using word_count_threshold %d.\n" %
(len(vocab), word_count_threshold))
# build index and vocabularies
for idx, w in enumerate(vocab):
self.word2idx[w] = idx + self.offset
self.idx2word[idx + self.offset] = w
print("word2idx size: %d, idx2word size: %d.\n" % (len(self.word2idx), len(self.idx2word)))
# Make glove embedding.
print("Loading glove embedding at path : %s. \n" % self.glove_embedding_path)
glove_full = self.load_glove(self.glove_embedding_path)
print("Glove Loaded, building word2idx, idx2word mapping. This may take a while.\n")
glove_matrix = np.zeros([len(self.idx2word), self.embedding_dim])
glove_keys = glove_full.keys()
for i in tqdm(range(len(self.idx2word))):
w = self.idx2word[i]
w_embed = glove_full[w] if w in glove_keys else np.random.randn(self.embedding_dim) * 0.4
glove_matrix[i, :] = w_embed
self.vocab_embedding = glove_matrix
print("Vocab embedding size is :", glove_matrix.shape)
print("Saving cache files ...\n")
save_pickle(self.word2idx, self.word2idx_path)
save_pickle(self.idx2word, self.idx2word_path)
save_pickle(glove_matrix, self.vocab_embedding_path)
print("Building vocabulary done.\n")
class Batch(object):
def __init__(self):
self.__doc__ = "empty initialization"
@classmethod
def get_batch(cls, keys=None, values=None):
"""Create a Batch directly from a number of Variables."""
batch = cls()
assert keys is not None and values is not None
for k, v in zip(keys, values):
setattr(batch, k, v)
return batch
def pad_collate(data):
"""Creates mini-batch tensors from the list of tuples (src_seq, trg_seq)."""
def pad_sequences(sequences):
sequences = [torch.LongTensor(s) for s in sequences]
lengths = torch.LongTensor([len(seq) for seq in sequences])
padded_seqs = torch.zeros(len(sequences), max(lengths)).long()
for idx, seq in enumerate(sequences):
end = lengths[idx]
padded_seqs[idx, :end] = seq[:end]
return padded_seqs, lengths
def pad_video_sequences(sequences):
"""sequences is a list of torch float tensors (created from numpy)"""
lengths = torch.LongTensor([len(seq) for seq in sequences])
v_dim = sequences[0].size(1)
padded_seqs = torch.zeros(len(sequences), max(lengths), v_dim).float()
for idx, seq in enumerate(sequences):
end = lengths[idx]
padded_seqs[idx, :end] = seq
return padded_seqs, lengths
# separate source and target sequences
column_data = zip(*data)
text_keys = ["q", "a0", "a1", "a2", "a3", "a4", "sub", "vcpt"]
label_key = "answer_idx"
qid_key = "qid"
vid_name_key = "vid_name"
vid_feat_key = "vid"
all_keys = text_keys + [label_key, qid_key, vid_name_key, vid_feat_key]
all_values = []
for i, k in enumerate(all_keys):
if k in text_keys:
all_values.append(pad_sequences(column_data[i]))
elif k == label_key:
all_values.append(torch.LongTensor(column_data[i]))
elif k == vid_feat_key:
all_values.append(pad_video_sequences(column_data[i]))
else:
all_values.append(column_data[i])
batched_data = Batch.get_batch(keys=all_keys, values=all_values)
return batched_data
def preprocess_inputs(batched_data, max_sub_l, max_vcpt_l, max_vid_l, device="cuda:0"):
"""clip and move to target device"""
max_len_dict = {"sub": max_sub_l, "vcpt": max_vcpt_l, "vid": max_vid_l}
text_keys = ["q", "a0", "a1", "a2", "a3", "a4", "sub", "vcpt"]
label_key = "answer_idx"
qid_key = "qid"
vid_feat_key = "vid"
model_in_list = []
for k in text_keys + [vid_feat_key]:
v = getattr(batched_data, k)
if k in max_len_dict:
ctx, ctx_l = v
max_l = min(ctx.size(1), max_len_dict[k])
if ctx.size(1) > max_l:
ctx_l = ctx_l.clamp(min=1, max=max_l)
ctx = ctx[:, :max_l]
model_in_list.extend([ctx.to(device), ctx_l.to(device)])
else:
model_in_list.extend([v[0].to(device), v[1].to(device)])
target_data = getattr(batched_data, label_key)
target_data = target_data.to(device)
qid_data = getattr(batched_data, qid_key)
return model_in_list, target_data, qid_data
if __name__ == "__main__":
# python tvqa_dataset.py --input_streams sub
import sys
from config import BaseOptions
sys.argv[1:] = ["--input_streams", "sub"]
opt = BaseOptions().parse()
dset = TVQADataset(opt, mode="valid")
data_loader = DataLoader(dset, batch_size=10, shuffle=False, collate_fn=pad_collate)
for batch_idx, batch in enumerate(data_loader):
model_inputs, targets, qids = preprocess_inputs(batch, opt.max_sub_l, opt.max_vcpt_l, opt.max_vid_l)
break