-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy patharmv7.c
938 lines (813 loc) · 30.1 KB
/
armv7.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/*
Copyright (c) 2013, Jurriaan Bremer
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the darm developer(s) nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "darm.h"
#include "darm-internal.h"
#include "armv7-tbl.h"
#define BITMSK_12 ((1 << 12) - 1)
#define BITMSK_16 ((1 << 16) - 1)
#define BITMSK_24 ((1 << 24) - 1)
#define ROR(val, rotate) (((val) >> (rotate)) | ((val) << (32 - (rotate))))
// the upper four bits define the rotation value, but we have to multiply the
// rotation value by two, so instead of right shifting by eight, we do a
// right shift of seven, effectively avoiding the left shift of one
#define ARMExpandImm(imm12) ROR((imm12) & 0xff, ((imm12) >> 7) & b11110)
static struct {
const char *mnemonic_extension;
const char *meaning_integer;
const char *meaning_fp;
} g_condition_codes[] = {
{"EQ", "Equal", "Equal"},
{"NE", "Not equal", "Not equal, or unordered"},
{"CS", "Carry Set", "Greater than, equal, or unordered"},
{"CC", "Carry Clear", "Less than"},
{"MI", "Minus, negative", "Less than"},
{"PL", "Plus, positive or zero", "Greater than, equal, or unordered"},
{"VS", "Overflow", "Unordered"},
{"VC", "No overflow", "Not unordered"},
{"HI", "Unsigned higher", "Greater than, unordered"},
{"LS", "Unsigned lower or same", "Greater than, or unordered"},
{"GE", "Signed greater than or equal", "Greater than, or unordered"},
{"LT", "Signed less than", "Less than, or unordered"},
{"GT", "Signed greater than", "Greater than"},
{"LE", "Signed less than or equal", "Less than, equal, or unordered"},
{"AL", "Always (unconditional)", "Always (unconditional)"},
{"", "Unconditional", "Unconditional Instruction"},
// alias for CS
{"HS", "Carry Set", "Greater than, equal, or unordered"},
// alias for CC
{"LO", "Carry Clear", "Less than"},
};
static const char *shift_types[] = {
"LSL", "LSR", "ASR", "ROR",
};
int darm_immshift_decode(const darm_t *d, const char **type,
uint32_t *immediate)
{
if(d->shift_type == S_INVLD) {
*type = NULL, *immediate = 0;
return -1;
}
else if(d->shift_type == S_ROR && d->Rs == R_INVLD && d->shift == 0) {
*type = "RRX", *immediate = 0;
}
else {
*type = darm_shift_type_name(d->shift_type);
*immediate = d->shift;
// 32 is encoded as 0 for immediate shifts
if((d->shift_type == S_LSR || d->shift_type == S_ASR) &&
d->Rs == R_INVLD && d->shift == 0) {
*immediate = 32;
}
}
return 0;
}
static int armv7_disas_uncond(darm_t *d, uint32_t w)
{
d->instr_type = T_ARM_UNCOND;
// there are not a lot of unconditional instructions, so the following
// values are a bit hardcoded
switch ((w >> 25) & b111) {
case b000:
d->instr = I_SETEND;
d->E = (w >> 9) & 1;
return 0;
case b010:
// if the 21th bit is set, then it's one of the CLREX, DMB, DSB or ISB
// instructions
if((w >> 21) & 1) {
d->instr = type_uncond2_instr_lookup[(w >> 4) & b111];
if(d->instr != I_INVLD) {
// if the instruction is either DMB, DSB or ISB, then the last
// four bits represent an "option"
if(d->instr != I_CLREX) {
d->option = w & b1111;
}
return 0;
}
}
// otherwise, if the 21th bit is not set, it's either the PLD or the
// PLI instruction
// we fall-through here, as 0b011 also handles the PLD and PLI
// instructions
case b011:
// if the 24th bit is set, then this is a PLD instruction, otherwise
// it's a PLI instruction
d->instr = (w >> 24) & 1 ? I_PLD : I_PLI;
d->Rn = (w >> 16) & b1111;
d->U = (w >> 23) & 1;
// if the 25th bit is set, then this instruction takes a shifted
// register as offset, otherwise, it takes an immediate as offset
if((w >> 25) & 1) {
d->Rm = w & b1111;
d->shift_type = (w >> 5) & b11;
d->shift = (w >> 7) & b11111;
}
else {
d->I = B_SET;
d->imm = w & BITMSK_12;
}
// if this instruction is PLD and the 22th bit is not set, then this
// is in fact PLDW
if(d->instr == I_PLD && ((w >> 22) & 1) == 0) {
d->instr = I_PLDW;
}
return 0;
case b101:
d->instr = I_BLX;
d->H = (w >> 24) & 1;
d->imm = w & BITMSK_24;
d->I = B_SET;
// check if the highest bit of the imm24 is set, if so, we
// manually sign-extend the integer
if((d->imm >> 23) & 1) {
d->imm = (d->imm | 0xff000000) << 2;
}
else {
d->imm = d->imm << 2;
}
// add the H bit
d->imm |= d->H << 1;
return 0;
case b111:
d->CRn = (w >> 16) & b1111;
d->coproc = (w >> 8) & b1111;
d->opc2 = (w >> 5) & b111;
d->CRm = w & b1111;
if(((w >> 4) & 1) == 0) {
d->instr = I_CDP2;
d->CRd = (w >> 12) & b1111;
d->opc1 = (w >> 20) & b1111;
}
else {
d->instr = (w >> 20) & 1 ? I_MRC2 : I_MCR2;
d->opc1 = (w >> 21) & b111;
d->Rt = (w >> 12) & b1111;
}
return 0;
}
return -1;
}
static int armv7_disas_cond(darm_t *d, uint32_t w)
{
// we first handle some exceptions for MUL, STR, and LDR-like
// instructions, which don't fit in the regular table (as they interfere
// with the other instructions)
// we have to check two parts of the encoded instruction, namely bits
// 25..27 which should be zero, and bits 4..7, of which bit 4 and bit 7
// should be one
const uint32_t mask = (b111 << 25) | (b1001 << 4);
if((w & mask) == (b1001 << 4)) {
// all variants of the MUL instruction
if(((w >> 24) & 1) == 0 && ((w >> 4) & b1111) == b1001) {
d->instr = type_mul_instr_lookup[(w >> 21) & b111];
d->instr_type = T_ARM_MUL;
// except for UMAAL and MLS, every variant takes the S bit
d->S = (w >> 20) & 1;
// each variant takes Rm and Rn
d->Rm = (w >> 8) & b1111;
d->Rn = w & b1111;
// if this is the UMAAL or MLS instruction *and* the S bit is set,
// then this is an invalid instruction
if((d->instr == I_UMAAL || d->instr == I_MLS) && d->S != 0) {
return -1;
}
switch ((uint32_t) d->instr) {
case I_MLA: case I_MLS:
d->Ra = (w >> 12) & b1111;
// fall-through
case I_MUL:
d->Rd = (w >> 16) & b1111;
break;
case I_UMAAL: case I_UMULL: case I_UMLAL: case I_SMULL:
case I_SMLAL:
d->RdHi = (w >> 16) & b1111;
d->RdLo = (w >> 12) & b1111;
break;
}
return 0;
}
else if(((w >> 24) & 1) == 0 && ((w >> 5) & b11) != 0 &&
(w >> 21) & 1) {
// the high 2 bits are represented by the 5th and 6th bit, the
// lower bit is represented by the 20th bit
uint32_t index = ((w >> 4) & b110) | ((w >> 20) & 1);
d->instr = type_stack1_instr_lookup[index];
if(d->instr == I_INVLD) return -1;
d->instr_type = T_ARM_STACK1;
d->Rn = (w >> 16) & b1111;
d->Rt = (w >> 12) & b1111;
d->P = (w >> 24) & 1;
d->U = (w >> 23) & 1;
// depending on the register form we either have to extract a
// register or an immediate
if(((w >> 22) & 1) == 0) {
d->Rm = w & b1111;
}
else {
// the four high bits start at bit 8, so we shift them right
// to their destination
d->imm = ((w >> 4) & b11110000) | (w & b1111);
d->I = B_SET;
}
return 0;
}
else if(((w >> 5) & b11) != 0 && ((w >> 20) & b10010) != b00010) {
// the high 2 bits are represented by the 5th and 6th bit, the
// lower bit is represented by the 20th bit
uint32_t index = ((w >> 4) & b110) | ((w >> 20) & 1);
d->instr = type_stack2_instr_lookup[index];
if(d->instr == I_INVLD) return -1;
d->instr_type = T_ARM_STACK2;
d->Rn = (w >> 16) & b1111;
d->Rt = (w >> 12) & b1111;
d->P = (w >> 24) & 1;
d->U = (w >> 23) & 1;
d->W = (w >> 21) & 1;
// depending on the register form we either have to extract a
// register or an immediate
if(((w >> 22) & 1) == 0) {
d->Rm = w & b1111;
}
else {
// the four high bits start at bit 8, so we shift them right
// to their destination
d->imm = ((w >> 4) & b11110000) | (w & b1111);
d->I = B_SET;
}
return 0;
}
// synchronization primitive instructions
else if(((w >> 24) & 1) == 1 && ((w >> 4) & b1111) == b1001) {
d->instr = type_sync_instr_lookup[(w >> 20) & b1111];
d->instr_type = T_ARM_SYNC;
d->Rn = (w >> 16) & b1111;
switch ((uint32_t) d->instr) {
case I_SWP: case I_SWPB:
d->B = (w >> 22) & 1;
d->Rt = (w >> 12) & b1111;
d->Rt2 = w & b1111;
return 0;
case I_LDREX: case I_LDREXD: case I_LDREXB: case I_LDREXH:
d->Rt = (w >> 12) & b1111;
return 0;
case I_STREX: case I_STREXD: case I_STREXB: case I_STREXH:
d->Rd = (w >> 12) & b1111;
d->Rt = w & b1111;
return 0;
}
}
}
// handles the STR, STRT, LDR, LDRT, STRB, STRBT, LDRB, LDRBT stack
// instructions, and the media instructions
else if(((w >> 26) & b11) == b01) {
// if both the 25th and the 4th bit are set, then this is a media
// instruction, which is handled in the big switch-case statement
const uint32_t media_mask = (1 << 25) | (1 << 4);
if((w & media_mask) != media_mask) {
d->instr = type_stack0_instr_lookup[(w >> 20) & b11111];
d->instr_type = T_ARM_STACK0;
d->Rn = (w >> 16) & b1111;
d->Rt = (w >> 12) & b1111;
// extract some flags
d->P = (w >> 24) & 1;
d->U = (w >> 23) & 1;
d->W = (w >> 21) & 1;
// if the 25th bit is not set, then this instruction takes an
// immediate, otherwise, it takes a shifted register
if(((w >> 25) & 1) == 0) {
d->imm = w & BITMSK_12;
d->I = B_SET;
}
else {
d->shift_type = (w >> 5) & b11;
d->shift = (w >> 7) & b11111;
d->Rm = w & b1111;
}
// if Rn == SP and P = 1 and U = 0 and W = 1 and imm12 = 4 and
// this is a STR instruction, then this is a PUSH instruction
if(d->instr == I_STR && d->Rn == SP && d->P == 1 && d->U == 0 &&
d->W == 1 && d->imm == 4) {
d->instr = I_PUSH;
}
// if Rn == SP and P = 0 and U = 1 and W = 0 and imm12 = 4 and
// this is a LDR instruction, then this is a POP instruction
else if(d->instr == I_LDR && d->Rn == SP && d->P == 0 &&
d->U == 1 && d->W == 0 && d->imm == 4) {
d->instr = I_POP;
}
return 0;
}
}
// handle saturating addition and subtraction instructions, these
// instructions have various masks; of bits 20..27 bit 24 is set and bits
// 21..22 specify which instruction this is, furthermore, bits 4..7
// represent the value 0b0101
const uint32_t mask2 = (b11111001 << 20) | (b1111 << 4);
if((w & mask2) == ((1 << 24) | (b0101 << 4))) {
d->instr = type_sat_instr_lookup[(w >> 21) & b11];
d->instr_type = T_ARM_SAT;
d->Rn = (w >> 16) & b1111;
d->Rd = (w >> 12) & b1111;
d->Rm = w & b1111;
return 0;
}
// handle packing, unpacking, saturation, and reversal instructions, these
// instructions have the 4th bit set and bits 23..27 represent 0b01101
const uint32_t mask3 = (b11111 << 23) | (1 << 4);
if((w & mask3) == ((b01101 << 23) | (1 << 4))) {
// some instructions are already handled elsewhere (namely, PKH, SEL,
// REV, REV16, RBIT, and REVSH)
uint32_t op1 = (w >> 20) & b111;
uint32_t A = (w >> 16) & b1111;
uint32_t op2 = (w >> 5) & b111;
d->instr_type = T_ARM_PUSR;
// the (SX|UX)T(A)(B|H)(16) instructions
// op1 represents the upper three bits, and A = 0b1111 represents
if(op2 == b011) {
// the lower bit
d->instr = type_pusr_instr_lookup[(op1 << 1) | (A == b1111)];
if(d->instr != I_INVLD) {
d->Rd = (w >> 12) & b1111;
d->Rm = w & b1111;
// rotation is shifted to the left by three, so we do this
// directly in our shift as well
d->rotate = (w >> 7) & b11000;
// if A is not 0b1111, then A represents the Rn operand
if(A != b1111) {
d->Rn = A;
}
return 0;
}
}
// SSAT
if((op1 & b010) == b010 && (op2 & 1) == 0) {
// if the upper bit is set, then it's USAT, otherwise SSAT
d->instr = (op1 >> 2) ? I_USAT : I_SSAT;
d->imm = (w >> 16) & b11111;
d->I = B_SET;
// signed saturate adds one to the immediate
if(d->instr == I_SSAT) {
d->imm++;
}
d->Rd = (w >> 12) & b1111;
d->shift = (w >> 7) & b11111;
d->shift_type = (w >> 5) & b11;
d->Rn = w & b1111;
return 0;
}
// SSAT16 and USAT16
if((op1 == b010 || op1 == b110) && op2 == b001) {
d->instr = op1 == b010 ? I_SSAT16 : I_USAT16;
d->imm = (w >> 16) & b1111;
d->I = B_SET;
// signed saturate 16 adds one to the immediate
if(d->instr == I_SSAT16) {
d->imm++;
}
d->Rd = (w >> 12) & b1111;
d->Rn = w & b1111;
return 0;
}
}
// the instruction label
d->instr = armv7_instr_labels[(w >> 20) & 0xff];
d->instr_type = armv7_instr_types[(w >> 20) & 0xff];
// do a lookup for the type of instruction
switch ((uint32_t) d->instr_type) {
case T_ARM_ARITH_SHIFT:
d->S = (w >> 20) & 1;
d->Rd = (w >> 12) & b1111;
d->Rn = (w >> 16) & b1111;
d->Rm = w & b1111;
d->shift_type = (w >> 5) & b11;
// type == 1, shift with the value of the lower bits of Rs
if(((w >> 4) & 1) == B_SET) {
d->Rs = (w >> 8) & b1111;
}
else {
d->shift = (w >> 7) & b11111;
}
return 0;
case T_ARM_ARITH_IMM:
d->S = (w >> 20) & 1;
d->Rd = (w >> 12) & b1111;
d->Rn = (w >> 16) & b1111;
d->imm = ARMExpandImm(w & BITMSK_12);
d->I = B_SET;
// check whether this instruction is in fact an ADR instruction
if((d->instr == I_ADD || d->instr == I_SUB) &&
d->S == 0 && d->Rn == PC) {
d->instr = I_ADR, d->Rn = R_INVLD;
d->U = (w >> 23) & 1;
}
return 0;
case T_ARM_BITS:
d->instr = type_bits_instr_lookup[(w >> 21) & b11];
d->instr_type = T_ARM_BITS;
d->Rd = (w >> 12) & b1111;
d->Rn = w & b1111;
d->lsb = (w >> 7) & b11111;
// the bfi and bfc instructions specify the MSB, whereas the SBFX and
// UBFX instructions specify the width minus one
if(d->instr == I_BFI) {
d->width = ((w >> 16) & b11111) - d->lsb + 1;
// if Rn is 0b1111, then this is in fact the BFC instruction
if(d->Rn == b1111) {
d->Rn = R_INVLD;
d->instr = I_BFC;
}
}
else {
d->width = ((w >> 16) & b11111) + 1;
}
return 0;
case T_ARM_BRNCHSC:
d->imm = w & BITMSK_24;
d->I = B_SET;
// if the instruction is B or BL, then we have to sign-extend it and
// multiply it with four
if(d->instr != I_SVC) {
// check if the highest bit of the imm24 is set, if so, we
// manually sign-extend the integer
if((d->imm >> 23) & 1) {
d->imm = (d->imm | 0xff000000) << 2;
}
else {
d->imm = d->imm << 2;
}
}
return 0;
case T_ARM_BRNCHMISC:
// first get the real instruction label
d->instr = type_brnchmisc_instr_lookup[(w >> 4) & b1111];
// now we do a switch statement based on the instruction label,
// rather than some magic values
switch ((uint32_t) d->instr) {
case I_BKPT:
d->imm = (((w >> 8) & BITMSK_12) << 4) + (w & b1111);
d->I = B_SET;
return 0;
case I_BX: case I_BXJ: case I_BLX:
d->Rm = w & b1111;
return 0;
case I_MSR:
d->Rn = w & b1111;
d->imm = (w >> 18) & b11;
d->I = B_SET;
return 0;
case I_QSUB: case I_SMLAW: case I_SMULW: default:
// returns -1
break;
}
break;
case T_ARM_MOV_IMM:
d->Rd = (w >> 12) & b1111;
d->imm = w & BITMSK_12;
d->I = B_SET;
// the MOV and MVN instructions have an S bit
if(d->instr == I_MOV || d->instr == I_MVN) {
d->S = (w >> 20) & 1;
// the immediate values of the MOV and MVN instructions have to
// be decoded
d->imm = ARMExpandImm(d->imm);
}
// the MOVW and the MOVT instructions take another 4 bits of immediate
else {
d->imm |= ((w >> 16) & b1111) << 12;
}
return 0;
case T_ARM_CMP_OP:
d->Rn = (w >> 16) & b1111;
d->Rm = w & b1111;
d->shift_type = (w >> 5) & b11;
// type == 1, shift with the value of the lower bits of Rs
if(((w >> 4) & 1) == B_SET) {
d->Rs = (w >> 8) & b1111;
}
else {
d->shift = (w >> 7) & b11111;
}
return 0;
case T_ARM_CMP_IMM:
d->Rn = (w >> 16) & b1111;
d->imm = ARMExpandImm(w & BITMSK_12);
d->I = B_SET;
return 0;
case T_ARM_OPLESS:
d->instr = type_opless_instr_lookup[w & b111];
return d->instr == I_INVLD ? -1 : 0;
case T_ARM_DST_SRC:
d->instr = type_shift_instr_lookup[(w >> 4) & b1111];
if(d->instr == I_INVLD) return -1;
d->S = (w >> 20) & 1;
d->Rd = (w >> 12) & b1111;
d->shift_type = (w >> 5) & b11;
if((w >> 4) & 1) {
d->Rm = (w >> 8) & b1111;
d->Rn = w & b1111;
}
else {
d->Rm = w & b1111;
d->shift = (w >> 7) & b11111;
// if this is a LSL instruction with a zero shift, then it's
// actually a MOV instruction (there's no register-shifted LSL)
if(d->instr == I_LSL && d->shift_type == S_LSL && d->shift == 0) {
d->instr = I_MOV;
}
// if this is a ROR instruction with a zero shift, then it's
// actually a RRX instruction (there's no register-shifted ROR)
else if(d->instr == I_ROR && d->shift_type == S_ROR &&
d->shift == 0) {
d->instr = I_RRX;
}
}
return 0;
case T_ARM_LDSTREGS:
d->W = (w >> 21) & 1;
d->Rn = (w >> 16) & b1111;
d->reglist = w & BITMSK_16;
// if this is the LDM instruction and W = 1 and Rn = SP then this is
// a POP instruction
if(d->instr == I_LDM && d->W == 1 && d->Rn == SP) {
d->instr = I_POP;
}
// if this is the STMDB instruction and W = 1 and Rn = SP then this is
// the PUSH instruction
else if(d->instr == I_STMDB && d->W == 1 && d->Rn == SP) {
d->instr = I_PUSH;
}
return 0;
case T_ARM_BITREV:
d->Rd = (w >> 12) & b1111;
d->Rm = w & b1111;
// if this is the REV16 instruction and bits 4..7 are 0b0011, then
// this is in fact the REV instruction
if(d->instr == I_REV16 && ((w >> 4) & b1111) == b0011) {
d->instr = I_REV;
}
// if this is the REVSH instruction and bits 4..7 are 0b0011, then
// this is in fact the RBIT instruction
else if(d->instr == I_REVSH && ((w >> 4) & b1111) == b0011) {
d->instr = I_RBIT;
}
return 0;
case T_ARM_MISC:
switch ((uint32_t) d->instr) {
case I_MVN:
d->S = (w >> 20) & 1;
d->Rd = (w >> 12) & b1111;
d->shift_type = (w >> 5) & b11;
d->Rm = w & b1111;
if(((w >> 4) & 1) == B_UNSET) {
d->shift = (w >> 7) & b11111;
}
else {
d->Rs = (w >> 8) & b1111;
}
return 0;
case I_DBG:
d->option = w & b1111;
return 0;
case I_SMC:
switch ((w >> 4) & b1111) {
// if the 7th bit is 1 and the 4th bit 0, then this is
// the SMUL instruction
case b1000: case b1010: case b1100: case b1110:
d->instr = I_SMUL;
d->instr_type = T_ARM_SM;
d->Rd = (w >> 16) & b1111;
d->Rm = (w >> 8) & b1111;
d->M = (w >> 6) & 1;
d->N = (w >> 5) & 1;
d->Rn = w & b1111;
break;
// smc
case b0111:
d->instr = I_SMC;
d->imm = w & b1111;
d->I = B_SET;
break;
// clz
case b0001:
d->instr = I_CLZ;
d->Rm = w & b1111;
d->Rd = (w >> 12) & b1111;
break;
default:
return -1;
}
return 0;
case I_SEL:
d->Rd = (w >> 12) & b1111;
d->Rn = (w >> 16) & b1111;
d->Rm = w & b1111;
// the SEL and PKH instructions share the same 8-bit identifier,
// if the 5th bit is set, then this is the SEL instruction,
// otherwise it's the PKH instruction
if(((w >> 5) & 1) == 0) {
d->instr = I_PKH;
d->shift_type = (w >> 5) & b10;
d->shift = (w >> 7) & b11111;
d->T = (w >> 6) & 1;
}
return 0;
}
case T_ARM_SM:
switch ((uint32_t) d->instr) {
case I_SMMUL:
d->Rd = (w >> 16) & b1111;
d->Ra = (w >> 12) & b1111;
d->Rm = (w >> 8) & b1111;
d->R = (w >> 5) & 1;
d->Rn = w & b1111;
// this can be either the SMMUL, the SMMLA, or the SMMLS
// instruction, depending on the 6th bit and Ra
if((w >> 6) & 1) {
d->instr = I_SMMLS;
}
// if it's SMMUL instruction, but Ra is not 0b1111, then this is
// the SMMLA instruction
else if(d->Ra != b1111) {
d->instr = I_SMMLA;
}
return 0;
case I_SMUSD:
d->Rd = (w >> 16) & b1111;
d->Ra = (w >> 12) & b1111;
d->Rm = (w >> 8) & b1111;
d->M = (w >> 5) & 1;
d->Rn = w & b1111;
// this can be either the SMLAD, the SMLSD, the SMUAD, or the
// SMUSD instruction, depending on the 6th bit and Ra
if((w >> 6) & 1 && d->Rn != b1111) {
d->instr = I_SMLSD;
}
else if(((w >> 6) & 1) == 0) {
d->instr = d->Ra == b1111 ? I_SMUAD : I_SMLAD;
}
return 0;
case I_SMLSLD:
d->RdHi = (w >> 16) & b1111;
d->RdLo = (w >> 12) & b1111;
d->Rm = (w >> 8) & b1111;
d->M = (w >> 5) & 1;
d->Rn = w & b1111;
// if the 6th bit is zero, then this is in fact the SMLALD
// instruction
if(((w >> 6) & 1) == 0) {
d->instr = I_SMLALD;
}
return 0;
case I_SMLA:
d->Rd = (w >> 16) & b1111;
d->Ra = (w >> 12) & b1111;
d->Rm = (w >> 8) & b1111;
d->M = (w >> 6) & 1;
d->N = (w >> 5) & 1;
d->Rn = w & b1111;
return 0;
case I_SMLAL:
d->RdHi = (w >> 16) & b1111;
d->RdLo = (w >> 12) & b1111;
d->Rm = (w >> 8) & b1111;
d->M = (w >> 6) & 1;
d->N = (w >> 5) & 1;
d->Rn = w & b1111;
return 0;
case I_SMUL:
// SMUL overlaps with SMC, so we define SMUL in SMC..
break;
}
case T_ARM_PAS:
// we have a lookup table with size 64, for all parallel signed and
// unsigned addition and subtraction instructions
// the upper three bits are represented by bits 20..22, so we only
// right-shift those 17 bytes, the lower three bits are represented
// by bits 5..7
d->instr = type_pas_instr_lookup[((w >> 17) & b111000) |
((w >> 5) & b111)];
if(d->instr == I_INVLD) return -1;
d->Rn = (w >> 16) & b1111;
d->Rd = (w >> 12) & b1111;
d->Rm = w & b1111;
return 0;
case T_ARM_MVCR:
d->CRn = (w >> 16) & b1111;
d->coproc = (w >> 8) & b1111;
d->opc2 = (w >> 5) & b111;
d->CRm = w & b1111;
if(((w >> 4) & 1) == 0) {
d->instr = I_CDP;
d->opc1 = (w >> 20) & b1111;
d->CRd = (w >> 12) & b1111;
}
else {
d->opc1 = (w >> 21) & b111;
d->Rt = (w >> 12) & b1111;
}
return 0;
case T_ARM_UDF:
d->I = B_SET;
d->imm = (w & b1111) | ((w >> 4) & (BITMSK_12 << 4));
return 0;
}
return -1;
}
int darm_armv7_disasm(darm_t *d, uint32_t w)
{
int ret;
darm_init(d);
d->w = w;
d->cond = (w >> 28) & b1111;
if(d->cond == C_UNCOND) {
ret = armv7_disas_uncond(d, w);
}
else {
ret = armv7_disas_cond(d, w);
}
// return error
if(ret < 0) return ret;
// if the shift-type is set to S_LSL, but Rs is R_INVLD and shift is zero,
// then there's effectively no shift, so we set shift-type to S_INVLD
if(d->shift_type == S_LSL && d->Rs == R_INVLD && d->shift == 0) {
d->shift_type = S_INVLD;
}
return 0;
}
const char *darm_mnemonic_name(darm_instr_t instr)
{
return instr < ARRAYSIZE(darm_mnemonics) ?
darm_mnemonics[instr] : NULL;
}
const char *darm_enctype_name(darm_enctype_t enctype)
{
return enctype < ARRAYSIZE(darm_enctypes) ?
darm_enctypes[enctype] : NULL;
}
const char *darm_register_name(darm_reg_t reg)
{
return reg != R_INVLD && reg < (int32_t) ARRAYSIZE(darm_registers) ?
darm_registers[reg] : NULL;
}
const char *darm_shift_type_name(darm_shift_type_t shifttype)
{
return
shifttype != S_INVLD && shifttype < (int32_t) ARRAYSIZE(shift_types) ?
shift_types[shifttype] : NULL;
}
const char *darm_condition_name(darm_cond_t cond, int omit_always_execute)
{
// we don't give the AL postfix, as almost every instruction would need
// one then
if(omit_always_execute != 0 && cond == C_AL) return "";
return cond != C_INVLD && cond < (int32_t) ARRAYSIZE(g_condition_codes) ?
g_condition_codes[cond].mnemonic_extension : NULL;
}
const char *darm_condition_meaning_int(darm_cond_t cond)
{
return cond != C_INVLD && cond < (int32_t) ARRAYSIZE(g_condition_codes) ?
g_condition_codes[cond].meaning_integer : NULL;
}
const char *darm_condition_meaning_fp(darm_cond_t cond)
{
return cond != C_INVLD && cond < (int32_t) ARRAYSIZE(g_condition_codes) ?
g_condition_codes[cond].meaning_fp : NULL;
}
darm_cond_t darm_condition_index(const char *condition_code)
{
if(condition_code == NULL) return -1;
// the "AL" condition flag
if(condition_code[0] == 0) return C_AL;
for (uint32_t i = 0; i < ARRAYSIZE(g_condition_codes); i++) {
if(!strcmp(condition_code, g_condition_codes[i].mnemonic_extension)) {
return i;
}
}
return C_INVLD;
}