-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
274 lines (244 loc) · 14.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import dynet
import util
import rnnlm as rnnlm
import argparse, random, time, sys, math
random.seed(78789) # I like setting a seed for consistent behavior when debugging
parser = argparse.ArgumentParser()
## need to have this dummy argument for dynet
parser.add_argument("--dynet-mem", help="set size of dynet memory allocation, in MB")
parser.add_argument("--dynet-gpu", help="use GPU acceleration")
## locations of data
parser.add_argument("--train", default="ptb/mikolov/train.ptb", help="location of training data")
parser.add_argument("--valid", default="ptb/mikolov/valid.ptb", help="location of validation data")
parser.add_argument("--test", default="ptb/mikolov/test.ptb", help="location of test data")
parser.add_argument("--reader", help="choose which CorpusReader subclass will be used for parsing raw data into tokens")
## alternatively, load one dataset and split it
parser.add_argument("--split_train", action='store_true', help="rather than loading valid & test sets, just split the training data into three pieces")
parser.add_argument("--valid_size", default=1000, type=float, help="if using --split_train, choose the proportion of data to make into validation set." +
"if this is less than 1, it is treated as a proportion of the total number of " +
"training examples; otherwise, it is a count")
parser.add_argument("--test_size", default=.05, type=float, help="if using --split_train, choose the proportion of data to make into test set." +
"if this is less than 1, it is treated as a proportion of the total number of " +
"training examples; otherwise, it is a count")
## vocab parameters
parser.add_argument('--rebuild_vocab', action='store_true', help="rebuild the vocabulary rather than using the cached vocabulary")
parser.add_argument('--unk_thresh', default=0, type=int, help="choose the minimum number of times a token needs to appear before being considered an <UNK>")
## rnn parameters
parser.add_argument("--size", choices={"small", "medium", "large", "enormous"}, help="convenience flag for setting the size of the RNN")
parser.add_argument("--gen_layers", default=1, type=int, help="choose number of layers for RNN")
parser.add_argument("--gen_input_dim", default=10, type=int, help="choose token embedding dimension")
parser.add_argument("--gen_hidden_dim", default=50, type=int, help="choose size of hidden state of RNN")
parser.add_argument("--rnn", default="lstm", choices={"lstm","rnn","gru"}, help="choose type of RNN")
parser.add_argument("--dropout", default=.1, type=float, help="set dropout probability")
## experiment parameters
parser.add_argument("--trainer", default="sgd", choices={"sgd", "adam", "adagrad"}, help="choose training algorithm")
parser.add_argument("--learning_rate", help="set learning rate of trainer")
parser.add_argument("--epochs", default=10, type=int, help="maximum number of epochs to run experiment")
parser.add_argument("--minibatch_size", default=1, type=int, help="size of minibatches")
parser.add_argument("--unbatch_idx", default=0, type=int, help="sometimes, with very long inputs, there will be long inputs that are the only input of that length."
" if these are included in minibatches, we end up using a ton of padding on the other sentnces in the"
" minibatch to compensate, and this often results in a ton of memory being consumed. this flag sets the"
" number of sentences in the training set to skip minibatching on - the longest N inputs will be "
"given batches of size 1")
parser.add_argument("--padded_batches", action="store_true", help="if this flag is not set, sentences will only be batched when there are multiple sentences of the"
" same length.")
parser.add_argument("--log_train_every_n", default=100, type=int, help="how often to log training loss")
parser.add_argument("--log_valid_every_n", default=5000, type=int, help="how often to evaluate on validation set, log the loss, and potentially save off the model")
parser.add_argument("--output", help="file location to log validation outputs to")
parser.add_argument("--begin_token", default='<s>', help="special token prepended to sequences")
parser.add_argument("--end_token", default='<e>', help="special token appended to sequences")
## choose what model to use
parser.add_argument("--arch", default="baseline", help="choose what RNNLM architecture you want to use")
parser.add_argument("--save", help="location to save model")
parser.add_argument("--load", help="location to load model from")
## other parameters
parser.add_argument("--word_level", action="store_true", help="if doing LM on PTB, convenience flag for deciding between character and word level")
parser.add_argument("--evaluate", action="store_true", help="convenience flag for runnning just test validation (no train step)")
args = parser.parse_args()
print "ARGS:", args
BEGIN_TOKEN = args.begin_token
END_TOKEN = args.end_token
if args.size == "small":
args.gen_input_dim = 128
args.gen_hidden_dim = 128
elif args.size == "medium":
args.gen_layers = 2
args.gen_input_dim = 256
args.gen_hidden_dim = 256
elif args.size == "large":
args.gen_layers = 2
args.gen_input_dim = 512
args.gen_hidden_dim = 512
elif args.size == "enormous":
args.gen_layers = 2
args.gen_input_dim = 1024
args.gen_hidden_dim = 1024
if args.reader is None:
if args.word_level: CORPUS_READ_STYLE = "generic_word"
else: CORPUS_READ_STYLE = "generic_char"
else:
CORPUS_READ_STYLE = args.reader
if args.evaluate: args.epochs = 0
################################### DYNET
model = dynet.Model()
if args.trainer == "sgd":
trainer = dynet.SimpleSGDTrainer(model)
learning_rate = 1.0
elif args.trainer == "adam":
trainer = dynet.AdamTrainer(model)
learning_rate = .001
elif args.trainer == "adagrad":
trainer = dynet.AdagradTrainer(model)
learning_rate = .01
if args.learning_rate is not None: learning_rate = args.learning_rate
################################### LOAD THE MODELS
if args.load:
lm = rnnlm.get_model(args.arch).load(model, args.load)
# OVERRIDES
else:
reader = util.get_reader(CORPUS_READ_STYLE)(args.train, mode=CORPUS_READ_STYLE, begin=BEGIN_TOKEN, end=END_TOKEN)
vocab = util.Vocab.load_from_corpus(reader, remake=args.rebuild_vocab)
vocab.START_TOK = vocab[BEGIN_TOKEN]
vocab.END_TOK = vocab[END_TOKEN]
if args.unk_thresh > 0: vocab.add_unk(args.unk_thresh, "<UNK>")
lm = rnnlm.get_model(args.arch)(model, vocab, args)
################################### LOAD THE DATA
train_data = list(util.get_reader(CORPUS_READ_STYLE)(args.train, mode=CORPUS_READ_STYLE, begin=BEGIN_TOKEN, end=END_TOKEN))
if not args.split_train:
valid_data = list(util.get_reader(CORPUS_READ_STYLE)(args.valid, mode=CORPUS_READ_STYLE, begin=BEGIN_TOKEN, end=END_TOKEN))
test_data = list(util.get_reader(CORPUS_READ_STYLE)(args.test, mode=CORPUS_READ_STYLE, begin=BEGIN_TOKEN, end=END_TOKEN))
################################### SPLIT THE DATA (IF NEEDED)
if args.split_train:
if args.valid_size > 1: vc = args.valid_size
else: vc = int(len(train_data)*(args.valid_size))
if args.test_size > 1: tc = args.test_size
else: tc = int(len(train_data)*(args.test_size))
valid_data = train_data[-(vc+tc):-tc]
test_data = train_data[-tc:]
train_data = train_data[:-(vc+tc)]
if len(train_data) == 0 or len(valid_data) == 0 or len(test_data) == 0:
raise Exception("either your train, validation, or test set is of size 0; adjust --valid_size and --test_size")
################################### WIPE THE OUTPUT FILE
if args.output:
outfile = open(args.output, 'w')
outfile.write("")
outfile.close()
################################### PREPARE THYSELF FOR EPOCHS
train_data.sort(key=lambda x:-len(x))
valid_data.sort(key=lambda x:-len(x))
test_data.sort(key=lambda x:-len(x))
if args.padded_batches:
unbatch_idx = args.minibatch_size*(int(args.unbatch_idx/args.minibatch_size)+1)
train_mb_indices = zip(range(unbatch_idx), range(1, unbatch_idx+1)) + zip(range(unbatch_idx, len(train_data), args.minibatch_size), range(unbatch_idx+args.minibatch_size, len(train_data)+args.minibatch_size, args.minibatch_size))
valid_mb_indices = zip(range(0, len(valid_data), args.minibatch_size), range(args.minibatch_size, len(valid_data)+args.minibatch_size, args.minibatch_size))
test_mb_indices = zip(range(0, len(test_data), args.minibatch_size), range(args.minibatch_size, len(test_data)+args.minibatch_size, args.minibatch_size))
else:
train_mb_indices = util.get_no_padding_indices(train_data, args.minibatch_size)
valid_mb_indices = util.get_no_padding_indices(valid_data, args.minibatch_size)
test_mb_indices = util.get_no_padding_indices(test_data, args.minibatch_size)
if args.word_level: words_predicted = lambda x: len(x) - 1
else: words_predicted = lambda x: len([c for c in vocab.pp(x) if c == ' ']) + 2
################################### LEGGO
best_score = None
token_count = sent_count = cum_loss = cum_perplexity = 0.0
log_train_counter = args.log_train_every_n
log_valid_counter = args.log_valid_every_n
sample_num = 0
_start = time.time()
for ITER in range(args.epochs):
lm.epoch = ITER
random.shuffle(train_mb_indices)
for i, (start_index, end_index) in enumerate(train_mb_indices):
#### train logging
if log_train_counter <= 0:
log_train_counter += args.log_train_every_n
print ITER, sample_num, " ",
trainer.status()
print "L:", cum_loss / token_count,
print "P:", math.exp(cum_loss / token_count),
print "T:", (time.time() - _start),
_start = time.time()
sample = lm.sample(max_toks=20)
if sample: print lm.vocab.pp(sample),
token_count = sent_count = cum_loss = cum_perplexity = 0.0
print
#### end of train logging
#### validation logging
if log_valid_counter <= 0:
log_valid_counter += args.log_valid_every_n
v_token_count = v_sent_count = v_cum_loss = 0.0
v_start = time.time()
for (v_start_index, v_end_index) in valid_mb_indices:
v_batch = valid_data[v_start_index:v_end_index]
v_isents = [[lm.vocab[w].i for w in v_sent] for v_sent in v_batch]
if args.minibatch_size == 1: v_losses = lm.BuildLMGraph(v_isents[0], sent_args={"test":True})
else: v_losses = lm.BuildLMGraph_batch(v_isents, sent_args={"test":True})
v_gen_losses = v_losses.vec_value()
v_cum_loss += sum(v_losses.vec_value())
v_token_count += sum([words_predicted(v_sent) for v_sent in v_batch])
v_sent_count += len(v_batch)
v_cum_perplexity = math.exp(v_cum_loss / v_token_count)
print "[Validation "+str(sample_num) + "]\t" + \
"Loss: "+str(v_cum_loss / v_token_count) + "\t" + \
"Perplexity: "+str(v_cum_perplexity) + "\t" + \
"Time: "+str(time.time() - v_start),
if args.save:
if best_score is None or best_score > v_cum_perplexity:
print "new best...saving to", args.save
best_score = v_cum_perplexity
lm.save(args.save)
if args.output:
print "(logging to", args.output + ")"
with open(args.output, "a") as outfile:
outfile.write(str(ITER) + "\t" + \
str(sample_num) + "\t" + \
str(v_cum_loss / v_token_count) + "\t" + \
str(v_cum_perplexity) + "\n")
print "\n"
#### end of validation logging
#### run training
sents = train_data[start_index:end_index]
isents = [[lm.vocab[w].i for w in sent] for sent in sents]
if args.minibatch_size == 1: losses = lm.BuildLMGraph(isents[0], sent_args={"test":False})
else: losses = lm.BuildLMGraph_batch(isents, sent_args={"test":False})
gen_losses = losses.vec_value()
loss = dynet.sum_batches(losses)
cum_loss += loss.value()
cum_perplexity += sum([math.exp(gen_loss / words_predicted(sent)) for gen_loss, sent in zip(gen_losses, sents)])
token_count += sum([words_predicted(sent) for sent in sents])
sent_count += len(sents)
#### end of run training
loss.backward()
trainer.update(learning_rate)
sample_num += len(sents)
log_train_counter -= len(sents)
log_valid_counter -= len(sents)
# end of one-sentence train loop
trainer.update_epoch(learning_rate)
# end of iteration
# end of training loop
ITER = "TEST"
sample_num = "TEST"
t_token_count = t_sent_count = t_cum_loss = 0.0
t_start = time.time()
for t_start_index, t_end_index in test_mb_indices:
t_batch = test_data[t_start_index:t_end_index]
t_isents = [[lm.vocab[w].i for w in t_sent] for t_sent in t_batch]
if args.minibatch_size == 1: t_losses = lm.BuildLMGraph(t_isents[0], sent_args={"test":True})
else: t_losses = lm.BuildLMGraph_batch(t_isents, sent_args={"test":True})
t_gen_losses = t_losses.vec_value()
t_cum_loss += sum(t_losses.vec_value())
t_token_count += sum([words_predicted(t_sent) for t_sent in t_batch])
t_sent_count += len(t_batch)
t_cum_perplexity = math.exp(t_cum_loss / t_token_count)
print "[Test "+str(sample_num) + "]\t" + \
"Loss: "+str(t_cum_loss / t_token_count) + "\t" + \
"Perplexity: "+str(t_cum_perplexity) + "\t" + \
"Time: "+str(time.time() - t_start),
if args.output:
print "(logging to", args.output + ")"
with open(args.output, "a") as outfile:
outfile.write(str(ITER) + "\t" + \
str(sample_num) + "\t" + \
str(t_cum_loss / t_token_count) + "\t" + \
str(t_cum_perplexity) + "\n")