From 431676d1229bc55222cc6e3631d4dbdd5b60b831 Mon Sep 17 00:00:00 2001 From: Jasper Bussemaker Date: Tue, 10 Oct 2023 11:15:58 +0200 Subject: [PATCH] Update default infill selection to only use ensembles --- sb_arch_opt/algo/arch_sbo/infill.py | 30 ++++++++--------------------- 1 file changed, 8 insertions(+), 22 deletions(-) diff --git a/sb_arch_opt/algo/arch_sbo/infill.py b/sb_arch_opt/algo/arch_sbo/infill.py index 3d07c49..1977ab9 100644 --- a/sb_arch_opt/algo/arch_sbo/infill.py +++ b/sb_arch_opt/algo/arch_sbo/infill.py @@ -55,14 +55,9 @@ def get_default_infill(problem: ArchOptProblemBase, n_parallel: int = None, min_ g_aggregation: 'ConstraintAggregation' = None) -> Tuple['ConstrainedInfill', int]: """ Get the default infill criterion according to the following logic: - - If evaluations can be run in parallel: - - Single-objective: Ensemble of EI, LCB, PoI with n_batch = n_parallel - - Multi-objective: Ensemble of MPoI, MEPoI with n_batch = n_parallel - - If no parallelization possible: - - Single-objective - - Continuous: Mean function estimate - - Mixed-discrete: Ensemble of EI, LCB, PoI with n_batch = 1 - - Multi-objective: Ensemble of MPoI, MEPoI with n_batch = 1 + - Single-objective: Ensemble of EI, LCB, PoI with n_batch = n_parallel + - Multi-objective: Ensemble of MPoI, MEPoI with n_batch = n_parallel + - n_parallel = 1 if parallelization is not possible - Set Probability of Feasibility as constraint handling technique if min_pof != .5, otherwise use g-mean prediction Returns the infill and recommended infill batch size. @@ -78,21 +73,12 @@ def get_default_infill(problem: ArchOptProblemBase, n_parallel: int = None, min_ mo_ensemble = [MinimumPoIInfill(), MinimumPoIInfill(euclidean=True)] def _get_infill(): - # Use the ensemble infill if parallel - if n_parallel > 1: - return EnsembleInfill(so_ensemble if problem.n_obj == 1 else mo_ensemble), n_parallel + # Single-objective ensemble infill + if problem.n_obj == 1: + return EnsembleInfill(so_ensemble), n_parallel - # Ensemble infill with 1 per iteration if multi-objective - if problem.n_obj > 1: - return EnsembleInfill(mo_ensemble), 1 - - # Mean function estimate if continuous single-objective - is_continuous = np.all(problem.is_cont_mask) - if is_continuous: - return FunctionEstimateConstrainedInfill(), 1 - - # Single-objective ensemble if mixed-discrete - return EnsembleInfill(so_ensemble), 1 + # Multi-objective ensemble infill + return EnsembleInfill(mo_ensemble), n_parallel # Get infill and set constraint handling technique infill, n_batch = _get_infill()