diff --git a/CHANGELOG.md b/CHANGELOG.md index 3948090..12ddf41 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,7 @@ # v0.11.2 (Upcoming Release) +- Optional eps and maxiter parameters in iterateCSteps() in LTS. + # v0.11.1 diff --git a/src/lts.jl b/src/lts.jl index 3374649..1ea1e12 100644 --- a/src/lts.jl +++ b/src/lts.jl @@ -17,6 +17,8 @@ Perform a concentration step for a given subset of a regression setting. - `setting::RegressionSetting`: RegressionSetting object with a formula and dataset. - `subsetindices::Array{Int, 1}`: Indicies of observations in the initial subset. - `h::Int`: A constant at least half of the number of observations. +- `eps::Float64`: A small number, default is 0.01. If difference of last two objectives is less than eps, function terminates. +- `maxiter::Int`: Maximum number of iteration. Default is 10000. # Notes This function is a helper for the lts function. A concentration step starts with a @@ -28,9 +30,11 @@ Rousseeuw, Peter J., and Katrien Van Driessen. "An algorithm for positive-breakd regression based on concentration steps." Data Analysis. Springer, Berlin, Heidelberg, 2000. 335-346. """ -function iterateCSteps(setting::RegressionSetting, subsetindices::Array{Int,1}, h::Int) +function iterateCSteps(setting::RegressionSetting, + subsetindices::Array{Int,1}, + h::Int; eps::Float64 = 0.01, maxiter::Int = 10000) X, y = @extractRegressionSetting setting - return iterateCSteps(X, y, subsetindices, h) + return iterateCSteps(X, y, subsetindices, h, eps = eps, maxiter = maxiter) end @@ -38,14 +42,12 @@ function iterateCSteps( X::AbstractMatrix{Float64}, y::AbstractVector{Float64}, subsetindices::Array{Int,1}, - h::Int, + h::Int; eps::Float64 = 0.01, maxiter::Int = 10000 ) #starterset = subsetindices oldobjective::Float64 = Inf64 objective::Float64 = Inf64 iter::Int = 0 - maxiter::Int = 10000 - eps::Float64 = 0.1 while iter < maxiter olsreg = ols(X[subsetindices, :], y[subsetindices]) betas = coef(olsreg) @@ -66,24 +68,26 @@ function iterateCSteps( end -function iterateCSteps(setting::RegressionSetting, initialBetas::AbstractVector{Float64}, h::Int) +function iterateCSteps(setting::RegressionSetting, + initialBetas::AbstractVector{Float64}, + h::Int; eps::Float64 = 0.01, maxiter::Int = 10000) X = designMatrix(setting) y = responseVector(setting) - return iterateCSteps(X, y, initialBetas, h) + return iterateCSteps(X, y, initialBetas, h, eps = eps, maxiter = maxiter) end function iterateCSteps( X::AbstractMatrix{Float64}, y::AbstractVector{Float64}, initialBetas::AbstractVector{Float64}, - h::Int, + h::Int; eps::Float64 = 0.01, maxiter::Int = 10000 ) n, p = size(X) #res = [y[i] - sum(X[i, :] .* initialBetas) for i = 1:n] res = y - X * initialBetas sortedresindices = sortperm(abs.(res)) subsetindices = sortedresindices[1:p] - return iterateCSteps(X, y, subsetindices, h) + return iterateCSteps(X, y, subsetindices, h, eps = eps, maxiter = maxiter) end