-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.single_train_test.toml
202 lines (155 loc) · 4.7 KB
/
configs.single_train_test.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
############################################
# ------------------------------------------
# configs_single_training.toml
# ------------------------------------------
#
# Configuration file for single training
#
############################################
# Run name
run_name = 'single_gegen_m01'
# Run description (optional)
run_description = """
single_training
no early stopping
with validation set (10%)
"""
# Output folder to save results
output_folder = 'results'
# Dataset path
data_folder = 'data'
dataset = 'sea_surface_temperature'
# dataset = 'pm25_concentration'
# dataset = 'intel_dataset'
# Cuda setting
no_cuda = false
# gpu to use (if available and if no_cuda is false)
gpu = 0
[preprocessing]
# sampling density
sampling_density = 0.1
# data normalization
# 'none' : no normalization
# 'minmax' : calls sklearn.preprocessing.MinMaxScaler
# 'standard' : calls sklearn.preprocessing.StandardScaler
# 'robust' : calls sklearn.preprocessing.RobustScaler
normalization = 'none'
# neighbor normalization from `hdla-gcn`
# deep Neural Message Passing With Hierarchical Layer Aggregation and Neighbor Normalization
layer_normalization = "neighbornorm"
[reproducibility]
# Development seed
dev_seed = 0
# Validation seeds
val_seeds = [1, 2]
# Testing seeds
test_seeds = [3, 4, 5, 6, 7]
[training]
# validation size
# a value between (0-1) representing a percentage
# if 0, no validation set will be used
validation_size = 0.3
# save checkpoint
save_checkpoint = true
# Epochs to save checkpoint
epochs_to_save_checkpoint = 100
# Early stopping
# only if there is validation set
early_stopping = false
# Patience for early stopping
patience = 100
[training.model]
# Model
# `gegen`, `gegenbauer`, `gegenconv`
# `cheby`, `chebyshev`, `chebyconv`
# `gcn`, `gcnnet`
# `gat`, `gatnet`
# `transformer`, `transformernet`
# `hdla`, `gcnhdla`, `gcn-hdla`
# `ffk`, `ffkgcnii`, 'ffk-gcnii'
# `mr`, `mrgnn`, `mr-gnn`
model = 'gegen'
# model kwargs
model_kwargs = {}#{concat=false}
[training.logging]
# verbose
verbose = {train=true, val=false, test=true}
[hparams]
# Maximum number of epochs to train
# A value will be randomly chosen from the list
epochs = 5000
# Range for initial learning rate
# A value will be randomly sampled from the interval [lr_min, lr_max]
lr = 0.026
# perturbation for Laplacian
epsilon = 0.05
# Range for filter order
filter_order = 4
# Range for alpha
alpha = 1
# Range for heads
heads = 2
# Range for dropout rate (1 - keep probability)
# A value will be randomly sampled from the interval [dropout_min, dropout_max]
dropout = 0
# max_k parameter from:
# - Multiresolution Reservoir Graph Neural Network 'mr-gnn'
# or k parameter for normalization trick in `ffk-gcn`
# - Graph Neural Networks With High-Order Polynomial Spectral Filters `ffk-gcn`
k = 1
# gamma parameter for normalization trick in `ffk-gcn`
# - Graph Neural Networks With High-Order Polynomial Spectral Filters `ffk-gcn`
gamma_norm = 1.0
# output parameter from:
# - Multiresolution Reservoir Graph Neural Network 'mr-gnn'
output= 'funnel'
[hparams.reg]
# Range for the regularization parameter for the Laplacian
# A value will be randomly sampled from the interval [lambda_min, lambda_max]
lambda_param = 6.10822003e-5
[hparams.layers]
# Range for number of layers
# A value will be randomly sampled from the interval [n_layers_min, n_layers_max]
n_conv_layers = 1
# Range for number of hidden units
# A value will be randomly sampled from the interval [n_hidden_min, n_hidden_max]
n_conv_hidden = 4
# Range for number of layers
# A value will be randomly sampled from the interval [n_layers_min, n_layers_max]
n_linear_layers = 0
# Range for number of hidden units
# A value will be randomly sampled from the interval [n_hidden_min, n_hidden_max]
n_linear_hidden = 12
[hparams.optim]
# Optimizer
# Set optimizer and **kwargs
# Check documentation for specific **kwargs
# https://pytorch.org/docs/stable/optim.html
# 'adam'
# 'adamw'
# 'sgd'
# 'adamax'
optim = 'adam'
# Range for weight decay (L2 loss on parameters)
# A value will be randomly sampled from the interval [weight_decay_min, weight_decay_max]
weight_decay = 0.00016795
optim_kwargs = {}
[hparams.lr_scheduler]
# Learning rate type and **kwargs
# Check documentation for specific **kwargs
# https://pytorch.org/docs/stable/optim.html
# 'none' : No scheduler
# 'cosine' : `CosineAnnealingLR`
# 'exponential' : `ExponentialLR`
# 'step' : `StepLR`
# 'plateau' : `ReduceLROnPlateau`
# 'none'
lr_scheduler = 'plateau'
lr_scheduler_kwargs = {mode = 'min', factor = 0.5, patience = 500, min_lr = 1e-3}
[hparams.criterion]
# Select the metric and **kwargs
# 'crossentropy' : `nn.CrossEntropyLoss`
# 'mse' : `nn.MSELoss`
# 'l1' : `nn.L1Loss`
criterion = 'mse'
criterion_kwargs = {reduction = 'mean'}