-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathL16-surrogate-de.py
57 lines (43 loc) · 1.53 KB
/
L16-surrogate-de.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import rosen, differential_evolution
from scipy.interpolate import Rbf
# do this to ignore scipy RBF ill-conditioned matrix warnings
import warnings
warnings.filterwarnings("ignore")
# surrogate optimization on 2D rosenbrock function
def lhs(N,D):
grid = np.linspace(0,1,N+1)
result = np.random.uniform(low=grid[:-1], high=grid[1:], size=(D,N))
for c in result:
np.random.shuffle(c)
return result.T
# wrapper around surrogate function, because it requires variables as
# separate arguments (scipy gives a vector)
def stupid_wrapper(X):
return s(*X)
bounds = [(-3,3)]*2
max_NFE = 3000
N_initial = 100
for seed in range(10):
# initial sample and surrogate model
X = lhs(N_initial, 2)*6-3 # scale up by bounds
Z = np.array([rosen(z) for z in X])
s = Rbf(X[:,0], X[:,1], Z, function='gaussian')
nfe = N_initial
bestf = np.min(Z)
bestx = X[np.argmin(Z),:]
while nfe < max_NFE and bestf > 10**-6:
# optimize surrogate function to find next point
result = differential_evolution(stupid_wrapper, bounds, polish=False)
# add the new point to the set of "true" evaluations
X = np.vstack((X, result.x))
truef = rosen(result.x)
Z = np.append(Z, truef)
# fit a new surrogate model with the updated information
s = Rbf(X[:,0], X[:,1], Z, function='gaussian')
if truef < bestf:
bestf = truef
bestx = result.x
nfe += 1
print('Seed ' + str(seed) + ', NFE-to-converge: ' + str(nfe) + ', solution: ' + str(bestx))