-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.js
288 lines (172 loc) · 6.16 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
function wordTokenize(x){
let pattern = /\W/g
return x.replace(pattern, ' ').split(' ').filter(String)
}
// prints result
const log = console.log
// get data
const url = 'data/train_tweets.txt'
const test_url = 'data/test_tweets_unlabeled.txt'
function load_data(url){
var fs = require('fs');
try {
var data = fs.readFileSync(url, 'utf-8').toString().toLowerCase().split('\n');
} catch(e) {
console.log('Error:', e.stack);
}
return data
}
var data = load_data(url);
var tweeters_tweets = {}
data.forEach(id => {
// skip the end of file's new line
if (id === ''){ return };
let tokens = wordTokenize(id);
if (!tweeters_tweets[tokens[0]])
{
tweeters_tweets[tokens[0]] = [];
}
else{
tokens.splice(1).forEach(e => {
tweeters_tweets[tokens[0]].push(e)
})
}
})
// log(tweeters_tweets)
// log(tweeters_tweets['1548'])
whole_tweets = []
// get entire tweets
Object.values(tweeters_tweets).forEach(tweets => {
tweets.forEach(e =>whole_tweets.push(e))
})
// log(whole_tweets.length) // 267
// how many times did a word occur in the whole_tweet
whole_tweets_freq_dist = {}
whole_tweets.forEach(token => {
whole_tweets_freq_dist[token] = whole_tweets_freq_dist[token] ? whole_tweets_freq_dist[token] + 1: 1;
})
// log(whole_tweets_freq_dist)
// calculate features for each subtweet
_features = new Set(Object.keys(whole_tweets_freq_dist))
feature_freqs = {}
// log(_features.size)
Object.keys(tweeters_tweets).forEach(tweeter =>{
if (!feature_freqs[tweeter]){
feature_freqs[tweeter] = {};
}
// log(tweeter)
tweeters_tweets[tweeter].forEach(token => {
let overall = tweeters_tweets[tweeter].length;
let presence = whole_tweets_freq_dist[token];
feature_freqs[tweeter][token] = presence / overall;
})
})
// log(feature_freqs)
// log(feature_freqs['9916']['eeeewwww'])
// calculate features averages and standard deviations
let tweets_features = {};
// for each feature
_features.forEach(feature => {
tweets_features[feature] = {};
// Mean
// Calculate the mean of the freq. in the subtwets
feature_avg = 0
Object.keys(tweeters_tweets).forEach(tweeter => {
if(!feature_freqs[tweeter][feature]){return;}
else{
feature_avg += feature_freqs[tweeter][feature];
}
})
tweets_features[feature]['Mean'] = feature_avg / Object.keys(tweeters_tweets).length;
feature_std = 0
Object.keys(tweeters_tweets).forEach(tweeter => {
if(!feature_freqs[tweeter][feature]){return}
else{
diff = feature_freqs[tweeter][feature] - tweets_features[feature]['Mean']
feature_std += Math.pow(diff, 2)
}
})
tweets_features[feature]['Std'] = Math.sqrt(feature_std / ((Object.keys(tweeters_tweets).length) - 1))
})
// log(tweets_features)
// log( tweets_features[feature]['Std'])
// Calculate the z-scores
let feature_zscores = {};
Object.keys(tweeters_tweets).forEach(tweeter => {
feature_zscores[tweeter] = {};
_features.forEach(feature => {
if (!feature_freqs[tweeter][feature] && !feature_zscores[tweeter][feature]){return}
let feature_val = feature_freqs[tweeter][feature];
let feature_mean = tweets_features[feature]['Mean'];
let feature_std = tweets_features[feature]['Std'];
feature_zscores[tweeter][feature] = (feature_val - feature_mean) / feature_std;
})
})
// log(feature_zscores)
//// For new case --Test case
function text2Token(data){
let testcase_tweeters_tweets = [];
data.forEach(id => {
// skip the end of file's new line
if (id === ''){ return };
let tokens = wordTokenize(id);
tokens.forEach(e => {
testcase_tweeters_tweets.push(e);
})
})
// log(testcase_tweeters_tweets)
return testcase_tweeters_tweets;
}
let test_case_data = load_data(test_url);
// log(test_case_data)
// returns a dist of unique token count
function freqDist(tokens){
tokens_freq_dist = {}
tokens.forEach(token => {
tokens_freq_dist[token] = tokens_freq_dist[token] ? tokens_freq_dist[token] + 1: 1;
})
return tokens_freq_dist;
}
let testcase_tokens = text2Token(test_case_data)
let overall = testcase_tokens.length;
let testcase_tokens_count = freqDist(testcase_tokens)
let testcase_freqs = {}
_features.forEach(feature => {
// let presence = whole_tweets_freq_dist[];
if (!testcase_tokens_count[feature]) { return }
else{
let presence = testcase_tokens_count[feature]
testcase_freqs[feature] = presence / overall
}
})
// log(testcase_freqs)
// calculate the test case's feature z-scores
let = testcase_zscores = {};
_features.forEach(feature => {
if (!testcase_freqs[feature] && !testcase_zscores[feature]){return}
let feature_val = testcase_freqs[feature];
let feature_mean = tweets_features[feature]['Mean'];
let feature_std = tweets_features[feature]['Std'];
testcase_zscores[feature] = (feature_val - feature_mean) / feature_std;
})
owner = {};
// Calculate the Delta
Object.keys(tweeters_tweets).forEach(tweeter => {
let delta = 0;
_features.forEach(feature => {
if (!testcase_zscores[feature] || !feature_zscores[tweeter][feature]){ return}
else{
delta += Math.abs(testcase_zscores[feature] - feature_zscores[tweeter][feature]);
}
});
delta /= _features.size;
owner[tweeter] = delta;
log('Delta score for tweeter ', tweeter,' is ', delta);
});
function getKeyByValue(dict, value){
return (Object.keys(dict).find(k => dict[k] == value ));
}
tweet_owner_val = Math.min(...Object.values(owner))
log('\nTweeter \"', getKeyByValue(owner, tweet_owner_val), '\" is most likely the tweeter of this tweet.\n')
log('----------------------------------')
log(test_case_data)