forked from ElectProject/Early-Vote-2020G
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MN.Rmd
136 lines (103 loc) · 4.51 KB
/
MN.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
title: "Minnesota Early Voting Statistics"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(knitr)
library(kableExtra)
library(scales)
library(DT)
library(highcharter)
state_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote.csv")
MN_stats <- read_csv("D:/DropBox/Dropbox/Mail_Ballots_2020/markdown/2020G_Early_Vote_MN.csv")
# Setup
party_shell <- data.frame(Party=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
party_shell[1,1] <- "Democrats"
party_shell[2,1] <- "Republicans"
party_shell[3,1] <- "Minor"
party_shell[4,1] <- "No Party Affiliation"
party_shell[5,1] <- "TOTAL"
race_shell <- data.frame(Race=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
race_shell[1,1] <- "Non-Hispanic White"
race_shell[2,1] <- "Non-Hispanic Black"
race_shell[3,1] <- "Hispanic"
race_shell[4,1] <- "Non-Hispanic Asian American"
race_shell[5,1] <- "Non-Hispanic Native American"
race_shell[6,1] <- "Other/Multiple/Unknown"
race_shell[7,1] <- "TOTAL"
gender_shell <- data.frame(Gender=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
gender_shell[1,1] <- "Female"
gender_shell[2,1] <- "Male"
gender_shell[3,1] <- "Unknown"
gender_shell[4,1] <- "TOTAL"
age_shell <- data.frame(Age=character(),
Count=integer(),
Percent=double(),
stringsAsFactors=FALSE)
age_shell[1,1] <- "18 to 24"
age_shell[2,1] <- "25 to 34"
age_shell[3,1] <- "35 to 44"
age_shell[4,1] <- "45 to 54"
age_shell[5,1] <- "55 to 64"
age_shell[6,1] <- "65 and up"
age_shell[7,1] <- "TOTAL"
# Minnesota
MN_stats_returns <- select(MN_stats, County, Mail.Accept.Tot, Mail.Req.Tot, Pct.Accept)
MN_stats_requests <- select(MN_stats, County, Mail.Req.Tot, Reg.Voters, Pct.Request)
```
## {.tabset}
Last Report: `r state_stats[24,9]`
Source: `r state_stats[24,2]`
### Total Early Vote
Total Early Vote: **`r format(as.numeric(state_stats[24,8]), big.mark =",")`**
Minnesota does not distinguish between mail and in-person ballots on their state reports. The statistics reported here thus combine all in-person early and mail ballot votes.
``` {r echo = FALSE}
MN_map_data <- MN_stats
MN_map_data <- mutate(MN_map_data, percent = round(100*(Mail.Accept.Tot/Mail.Req.Tot), digits = 1))
MN_map_data <- mutate(MN_map_data, fips = as.character(fips))
mapfile <- download_map_data("countries/us/us-mn-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MN_map_data <- left_join(MN_map_data, mapdata, by = "fips")
MN_map_data <- arrange(MN_map_data, row)
hcmap(map = "countries/us/us-mn-all", data = MN_map_data,
value = "percent", name = "Percent Voted", joinBy = "fips") %>%
hc_title(text ="Percent Accepted") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MN_stats_returns, colnames = c("County", "Total Early Vote", "Mail Ballots Requested", "Percent Voted"), rownames = F) %>%
formatPercentage('Pct.Accept', 1) %>%
formatRound(c('Mail.Accept.Tot','Mail.Req.Tot'), 0, mark = ",")
```
### Mail Ballots Requested
Mail Ballots Requested: **`r format(as.numeric(state_stats[24,5]), big.mark =",")`**
``` {r echo = FALSE}
MN_map_data <- MN_stats
MN_map_data <- mutate(MN_map_data, percent = round(100*(Mail.Req.Tot/Reg.Voters), digits = 1))
MN_map_data <- mutate(MN_map_data, fips = as.character(fips))
mapfile <- download_map_data("countries/us/us-mn-all.js")
mapdata <- get_data_from_map(mapfile)
mapdata$row <- as.integer(rownames(mapdata))
MN_map_data <- left_join(MN_map_data, mapdata, by = "fips")
MN_map_data <- arrange(MN_map_data, row)
hcmap(map = "countries/us/us-mn-all", data = MN_map_data,
value = "percent", name = "Request Rate", joinBy = "fips") %>%
hc_title(text ="Request Rate") %>%
hc_subtitle(text = "County plots may not be shaded using the same scale")
```
``` {r echo = FALSE}
datatable(MN_stats_requests, colnames = c("County", "Mail Ballots Requested", "Registered Voters", "Percent Requested"), rownames = F) %>%
formatPercentage('Pct.Request', 1) %>%
formatRound(c('Mail.Req.Tot', 'Reg.Voters'), 0, mark = ",")
```