diff --git a/html/.buildinfo b/html/.buildinfo deleted file mode 100644 index 4d38845..0000000 --- a/html/.buildinfo +++ /dev/null @@ -1,4 +0,0 @@ -# Sphinx build info version 1 -# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 15909ba89e1fcdfb649a555995912958 -tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/html/_modules/index.html b/html/_modules/index.html deleted file mode 100644 index 9da7a2e..0000000 --- a/html/_modules/index.html +++ /dev/null @@ -1,99 +0,0 @@ - - - - - - - Overview: module code — vtacML documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

All modules for which code is available

- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/_modules/vtacML/pipeline.html b/html/_modules/vtacML/pipeline.html deleted file mode 100644 index ed41c7b..0000000 --- a/html/_modules/vtacML/pipeline.html +++ /dev/null @@ -1,747 +0,0 @@ - - - - - - - vtacML.pipeline — vtacML documentation - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Source code for vtacML.pipeline

-import logging
-import os
-import matplotlib.pyplot as plt
-import numpy as np
-import pandas as pd
-import yaml
-import joblib
-
-
-from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
-from sklearn.neighbors import KNeighborsClassifier
-from sklearn.linear_model import LogisticRegression
-from sklearn.tree import DecisionTreeClassifier
-from sklearn.svm import SVC
-from sklearn.metrics import mean_absolute_error, mean_squared_error, f1_score, confusion_matrix
-from sklearn.model_selection import train_test_split, GridSearchCV
-from sklearn.pipeline import Pipeline
-from sklearn.preprocessing import StandardScaler, Normalizer
-
-from imblearn.over_sampling import SMOTE
-
-from yellowbrick import ROCAUC
-from yellowbrick.model_selection import FeatureImportances, ValidationCurve
-from yellowbrick.classifier import ClassificationReport, ConfusionMatrix, PrecisionRecallCurve, ClassPredictionError
-from yellowbrick.model_selection import RFECV
-
-from .preparation import Cleaner
-from .utils import get_path
-
-log = logging.getLogger(__name__)
-
-
-
-[docs] -def predict_from_best_pipeline(X: pd.DataFrame, prob_flag=False, model_name='0.974_rfc_best_model.pkl', - config_path=None): - """ - Predict using the best model pipeline. - - Parameters - ---------- - X : array-like - Features to predict. - prob_flag : bool, optional - Whether to return probabilities, by default False. - model_name : str, optional - Name of the model to use, by default '0.974_rfc_best_model.pkl' - model_path : str, optional - Path to the model to use for prediction, by default 'None' - config_path : str, optional - Path to the configuration file, by default '../config/config.yaml'. - - Returns - ------- - ndarray - Predicted values or probabilities. - """ - - vtac_ml_pipe = VTACMLPipe(config_file=config_path) - print(model_name) - vtac_ml_pipe.load_best_model(model_name=model_name) - print(vtac_ml_pipe.best_model) - y = vtac_ml_pipe.predict(X, prob=prob_flag) - return y
- - - -
-[docs] -class VTACMLPipe: - """ - A machine learning pipeline for training and evaluating an optimal model for optical identification of GRBs for the SVOM mission. - - Parameters - ---------- - config_path : str, optional - Path to the configuration file. Default 'config/config.yaml' - - """ - - def __init__(self, config_file='config/config.yaml'): - - """ - Initialize the VTACMLPipe. - - Parameters - ---------- - config_path : str - Path to the configuration file. - """ - - # initialize attributes - self.config = None - self.X = None - self.y = None - self.X_columns = None - self.y_columns = None - self.X_train = None - self.y_train = None - self.X_test = None - self.y_test = None - self.preprocessing = Pipeline(steps=[], verbose=True) - self.full_pipeline = Pipeline(steps=[], verbose=True) - self.models = {} - self.best_model = None - self.y_predict = None - self.y_predict_prob = None - - # Load configs from config file - self.load_config(config_file) - - # Defining Steps of the preprocessing pipeline - cleaner = Cleaner(variables=self.X_columns) - scaler = StandardScaler() - normalizer = Normalizer() - self.steps = [ - ('cleaner', cleaner), - # ('ohe', ohe), - ('scaler', scaler), - ('normalizer', normalizer) - ] - self._create_pipe(self.steps) - -
-[docs] - def load_config(self, config_file): - """ - Load the configuration file and prepare the data. - - Parameters - ---------- - config_file : str - The path to the configuration file. - - """ - config_path = get_path(config_file) - - with open(config_path, 'r') as file: - self.config = yaml.safe_load(file) - - # loading config file and prepping data - data_file = self.config['Inputs']['file'] - data = self._get_data(data_file=data_file) - - self.X_columns = self.config['Inputs']['columns'] - self.X = data[self.X_columns] - self.y_columns = self.config['Inputs']['target_column'] - self.y = data[self.y_columns] - self._load_data(data, columns=self.X_columns, target=self.y_columns, test_size=0.2) - - # building models attribute - for model in self.config['Models']: - if model == 'rfc': - self.models[model] = RandomForestClassifier() - if model == 'svc': - self.models[model] = SVC() - if model == 'knn': - self.models[model] = KNeighborsClassifier() - if model == 'lr': - self.models[model] = LogisticRegression() - if model == 'dt': - self.models[model] = DecisionTreeClassifier() - if model == 'ada': - self.models[model] = AdaBoostClassifier()
- - -
-[docs] - def train(self, save_all_model=False, resample_flag=False, scoring='f1', cv=5): - """ - Train the pipeline with the given data. - - Parameters - ---------- - save_all_model : bool, optional - Whether to save best model of each model type to output directory. Default is False. - resample_flag : bool, optional - Whether to resample the data. Default is False - scoring : str, optional - The scoring function to use. Default is 'f1'. - cv : int, optional - The cross-validation split to use. Default is 5. - - Returns - ------- - Pipeline - Trained machine learning pipeline. - """ - - models = self.models - - if resample_flag: - self.X_train, self.y_train = self._resample(self.X_train, self.y_train) - - if self.preprocessing.steps is None: - print("No preprocessing steps") - model_path = None - best_score = 0 - for name, model in models.items(): - - param_grid = self.config['Models'][name]['param_grid'] - - log.info("Model: {}".format(name)) - - self.full_pipeline = Pipeline(steps=self.preprocessing.steps.copy(), verbose=True) - self.full_pipeline.steps.append((name, model)) - log.info(self.full_pipeline.steps) - - # model fitting - grid_search = GridSearchCV(self.full_pipeline, param_grid, scoring=scoring, verbose=2, cv=cv) - grid_search.fit(self.X_train, self.y_train) - - model_filename = f'{round(grid_search.best_score_, 3)}_{name}_best_model.pkl' - model_path = get_path(f'output/models/{model_filename}') - if save_all_model: - joblib.dump( - grid_search.best_estimator_, - model_path) - - if grid_search.best_score_ > best_score: - best_score = grid_search.best_score_ - self.best_model = grid_search.best_estimator_ - - log.info('*' * 50) - log.info(f'Best {name} Pipeline:') - log.info(grid_search.best_estimator_) - log.info(f'Best Score: {grid_search.best_score_}') - log.info('*' * 50) - log.info(f'Overall best model: {self.best_model}')
- - - # self.save_best_model(model_path=model_path) - -
-[docs] - def save_best_model(self, model_name='best_model', model_path=None): - """ - Saves best model from training to the specified path in the config file. Optionally change name and/or path - of the model. - - Parameters - ------- - model_name : str, optional - Name of the model to be saved. Default='best_model'. - model_path : str, optional - Path to the model to be saved. Default='model_path' in config file - - - """ - if model_path is None: - model_path = get_path(f'{self.config['Outputs']['model_path']}/{model_name}') - else: - print(model_path) - model_path = get_path(model_path) - print(model_path) - - joblib.dump(self.best_model, model_path) - logging.info(f'Saved model to {model_path}')
- - -
-[docs] - def load_best_model(self, model_name): - """ - Loads 'model_name' into current pipeline. - - Parameters - ------- - model_name : str - The name of the model from the Outputs/models/ directory to be loaded. - - - """ - model_path = get_path(f'{self.config['Outputs']['model_path']}/{model_name}') - self.best_model = joblib.load(model_path) - logging.info(f'Loaded {model_path}')
- - -
-[docs] - def evaluate(self, name, plot=False, score=f1_score): - """ - Evaluate the best model with various metrics and visualization. - - Parameters - ---------- - name : str - The name for the evaluation output. - plot : bool, optional - If True, generates and saves evaluation plots, by default False. - score : callable, optional - The scoring function to use for evaluation, by default f1_score. - - """ - viz_path = self.config['Outputs']['viz_path'] - output_path = get_path(f'{viz_path}/{name}') - - print(self.best_model.steps) - if not os.path.exists(output_path): - os.makedirs(output_path) - print(f"Folder '{output_path}' created.") - else: - print(f"Folder '{output_path}' already exists.") - # INCLUDE case in titles - # model scoring - # - # if self.best_model.steps[-1][0] == 'knn' and plot: - # print('plotting') - # self.preprocessing.fit(self.X) - # X = pd.DataFrame(self.preprocessing.transform(self.X)) - # self.plot_knn_neighbors(knn=self.best_model.steps[-1][1], X=X, y=self.y, features=self.X_columns) - # print('done plotting') - # else: - print(self.best_model.steps[-1][1]) - - # Evaluate model performance - self._print_model_eval() - - if plot: - - _, ax_report = plt.subplots() - - report_viz = ClassificationReport(self.best_model, classes=["NOT_GRB", "IS_GRB"], support=True, - ax=ax_report) - report_viz.fit(self.X_train, self.y_train) # Fit the visualizer and the model - report_viz.score(self.X_test, self.y_test) # Evaluate the model on the test data - report_viz.show(outpath=output_path + '/classification_report.pdf') - - _, ax_cm_test = plt.subplots() - - cm_test_viz = ConfusionMatrix(self.best_model, classes=["NOT_GRB", "IS_GRB"], percent=True, axes=ax_cm_test) - cm_test_viz.fit(self.X_train, self.y_train) - cm_test_viz.score(self.X_test, self.y_test) - cm_test_viz.show(outpath=output_path + '/confusion_matrix_test.pdf') - - _, ax_cm_train = plt.subplots() - - cm_train_viz = ConfusionMatrix(self.best_model, classes=["NOT_GRB", "IS_GRB"], percent=True, ax=ax_cm_train) - cm_train_viz.fit(self.X_train, self.y_train) - cm_train_viz.score(self.X_train, self.y_train) - cm_train_viz.show(outpath=output_path + '/confusion_matrix_train.pdf') - - _, ax_roc = plt.subplots() - - roc_viz = ROCAUC(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_roc) - roc_viz.fit(self.X_train, self.y_train) # Fit the training data to the visualizer - roc_viz.score(self.X_test, self.y_test) # Evaluate the model on the test data - roc_viz.show(outpath=output_path + '/ROC_AUC.pdf') - - _, ax_pr_curve = plt.subplots() - - pr_curve_viz = PrecisionRecallCurve(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_pr_curve) - pr_curve_viz.fit(self.X_train, self.y_train) - pr_curve_viz.score(self.X_test, self.y_test) - pr_curve_viz.show(outpath=output_path + '/PR_curve.pdf') - - _, ax_class_pred = plt.subplots() - ax_class_pred.semilogy() - - class_pred_viz = ClassPredictionError(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_class_pred) - class_pred_viz.fit(self.X_train, self.y_train) - class_pred_viz.score(self.X_test, self.y_test) - class_pred_viz.show(outpath=output_path + '/class_predictions.pdf') - # - if self.best_model.steps[-1][1] == RandomForestClassifier(): - _, ax_feature_imp = plt.subplots() - - feature_imp_viz = FeatureImportances(self.best_model.steps[-1][1], ax=ax_feature_imp) - feature_imp_viz.fit(self.X, self.y) - feature_imp_viz.show(outpath=output_path + '/feature_importances.pdf')
- - # if plot_extra: - # self.hyperparameter_valid_curve(outpath=output_path) - # # self.recursive_feature_elimination_plot(outpath=output_path) - # - -
-[docs] - def predict(self, X, prob=False): - """ - Predict using the best model. - - Parameters - ---------- - X : DataFrame - The input features for prediction. - prob : bool, optional - If True, returns the probability of the predictions, by default False. - - Returns - ------- - ndarray - The predicted values or probabilities. - """ - X = X[self.X_columns] - if prob is True: - self.y_predict_prob = self.best_model.predict_proba(X) - return self.y_predict_prob - else: - self.y_predict = self.best_model.predict(X) - return self.y_predict
- - - @staticmethod - def _get_data(data_file: str): - """ - Load data from a parquet file. - - Parameters - ---------- - data_file : str - The name of the data file to load. - - Returns - ------- - DataFrame - The loaded data. - """ - data_path = get_path(f'/data/{data_file}') - print(data_path) - data = pd.read_parquet(data_path, engine='fastparquet') - return data - - def _load_data(self, data: pd.DataFrame, columns: list, target: str, test_size: float = 0.2): - """ - Load the data from the source specified in the config. - - Parameters - ---------- - data : pd.DataFrame - The data to load. - columns : list - The columns to load. - target: str - The target column. - test_size: float, optional - The size of the test sample as a fraction of the total sample. Default is 0.2. - - Returns - ------- - DataFrame - Loaded data. - """ - X = data[columns] - y = data[target] - self._split_data(X, y, test_size) - - def _split_data(self, X, y, test_size): - """ - Split data into training and testing sets. - - Parameters - ---------- - X : DataFrame - The input features. - y : array-like - The target values. - test_size : float - The proportion of the dataset to include in the test split. - - Returns - ------- - None - """ - (self.X_train, - self.X_test, - self.y_train, - self.y_test) = train_test_split(X, y, - test_size=test_size, - random_state=123) - - # _, ax_class_balance = plt.subplots() - # ax_class_balance.semilogy() - # class_balance_visualizer = ClassBalance(labels=["NOT_GRB", "GRB"], ax=ax_class_balance, - # kwargs={'verbose': 2}) - # class_balance_visualizer.fit(self.y_train, self.y_test) # Fit the data to the visualizer - # class_balance_visualizer.show(outpath='/output/visualizations/class_balance.pdf') - - @staticmethod - def _resample(X, y): - """ - Resamples the input data - - Parameters - ------- - X : pd.DataFrame - input data - y : pd.Series - input label - - Returns - ------- - X_ : pd.DataFrame - resampled data - y_ : pd.Series - resampled label - """ - sm = SMOTE(sampling_strategy='minority', random_state=42) - X_, y_ = sm.fit_resample(X, y) - return X_, y_ - - def _create_pipe(self, steps): - """ - Create the machine learning pipeline from the given steps. - - Parameters - ------- - steps : list - The steps to use for the machine learning preprocessing pipeline. - - Returns - ------- - Pipeline - The created machine learning pipeline. - """ - for step in steps: - self.preprocessing.steps.append(step) - - def _print_model_eval(self): - """ - Prints the evaluation of the model, mean average error (MAE), root mean squared error (RMSE), - f1 score and confusion matrices for training and testing datasets. - """ - - train_pred = self.best_model.predict(self.X_train) - test_pred = self.best_model.predict(self.X_test) - - train_conf_matrix = confusion_matrix(self.y_train, train_pred) - test_conf_matrix = confusion_matrix(self.y_test, test_pred) - print('*' * 50) - print('Training score:') - print( - f'MAE: {round(mean_absolute_error(self.y_train, train_pred), 4)} ' - f'| RMSE: {round(mean_squared_error(self.y_train, train_pred, squared=False), 4)} ' - f'| F1: {round(f1_score(self.y_train, train_pred), 4)}' - ) - print('Confusion Matrix:') - print(train_conf_matrix) - print('-' * 20) - print('Validation score:') - print( - f'MAE: {round(mean_absolute_error(self.y_test, test_pred), 4)} ' - f'| RMSE: {round(mean_squared_error(self.y_test, test_pred, squared=False), 4)} ' - f'| F1: {round(f1_score(self.y_test, test_pred), 4)}' - ) - print('Confusion Matrix:') - print(test_conf_matrix)
- - -# def hyperparameter_valid_curve(self, outpath): -# """ -# Validate hyperparameters and generate validation curves. -# -# Parameters -# ---------- -# outpath : str -# The output path where the validation curve plots will be saved. -# -# Returns -# ------- -# None -# """ -# best_model_name = self.best_model.steps[-1][0] -# param_grid = self.config['Models'][best_model_name]['param_grid'] -# for param in param_grid: -# # self.preprocessing.fit(self.X, self.y) -# # processed_X = self.preprocessing.transform(self.X) -# # processed_y = self.y -# param_range = param_grid[param] -# param_name = param.split('__')[1] -# print(f'Validating {param_name} over range {param_range}') -# _, ax_valid_curve = plt.subplots() -# -# valid_curve_viz = ValidationCurve(self.best_model, -# param_name=param, -# param_range=param_range, -# cv=5, -# scoring="f1", -# ax=ax_valid_curve -# ) -# valid_curve_viz.fit(self.X, self.y) -# valid_curve_viz.show(outpath=f'{outpath}/{param_name}_valid_curve.pdf') -# -# def recursive_feature_elimination_plot(self, outpath): -# """ -# Generate a recursive feature elimination plot. -# -# Parameters -# ---------- -# outpath : str -# The output path where the feature elimination plot will be saved. -# -# Returns -# ------- -# None -# """ -# _, ax_feature_elimination = plt.subplots() -# visualizer = RFECV(self.best_model.steps[-1][1], cv=5, scoring='f1_weighted', ax=ax_feature_elimination) -# visualizer.fit(self.X, self.y) # Fit the data to the visualizer -# visualizer.show(outpath=outpath + 'feature_elimination.pdf') -# -# @staticmethod -# def plot_knn_neighbors(knn, X, y, features): -# """ -# Plot the KNN neighbors for a given dataset. -# -# Parameters -# ---------- -# knn : KNeighborsClassifier -# The KNN classifier. -# X : DataFrame -# The dataset containing the features. -# y : array-like -# The target values. -# features : list -# List of feature names to plot. -# -# Returns -# ------- -# None -# """ -# -# # Select a random point -# random_index = np.random.randint(0, len(X)) -# random_point = X.iloc[random_index] -# -# # Find the neighbors of the random point -# neighbors = knn.kneighbors([random_point], return_distance=False) -# -# # Plot each pair of features -# num_features = len(features) -# for i in range(num_features): -# for j in range(i + 1, num_features): -# plt.figure(figsize=(8, 6)) -# plt.scatter(X.iloc[:, i], X.iloc[:, j], c=y, cmap='viridis', marker='o', edgecolor='k', s=50) -# plt.scatter(random_point[i], random_point[j], c='red', marker='x', s=200, label='Random Point') -# plt.scatter(X.iloc[neighbors[0], i], X.iloc[neighbors[0], j], c='red', marker='o', edgecolor='k', s=100, -# facecolors='none', label='Neighbors') -# plt.xlabel(features[i]) -# plt.ylabel(features[j]) -# plt.title(f'KNN Neighbors with {features[i]} vs {features[j]}') -# plt.legend() -# plt.savefig( -# f'/output/visualizations/knn_plots/{features[i]}_vs_{features[j]}_knn_neighbors.pdf' -# ) - - -
- -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/_sources/index.rst.txt b/html/_sources/index.rst.txt deleted file mode 100644 index c2e6267..0000000 --- a/html/_sources/index.rst.txt +++ /dev/null @@ -1,24 +0,0 @@ -.. vtacML documentation master file, created by - sphinx-quickstart on Wed Jun 12 23:30:54 2024. - You can adapt this file completely to your liking, but it should at least - contain the root `toctree` directive. - -Welcome to vtacML's homepage! -================================== -.. include:: ../README_DOCS.md - :parser: recommonmark - -.. toctree:: - :maxdepth: 2 - :caption: Contents: - - modules - - - -Indices and tables -================== - -* :ref:`genindex` -* :ref:`modindex` -* :ref:`search` diff --git a/html/_sources/modules.rst.txt b/html/_sources/modules.rst.txt deleted file mode 100644 index 859060a..0000000 --- a/html/_sources/modules.rst.txt +++ /dev/null @@ -1,13 +0,0 @@ -Docs vtacML -=========== - -Pipeline --------- - -.. automodule:: vtacML.pipeline - :members: - :undoc-members: - :show-inheritance: - :exclude-members: _split_data, _get_data, _load_data, _create_pipe, _load_config, _resample - - diff --git a/html/_static/alabaster.css b/html/_static/alabaster.css deleted file mode 100644 index e3174bf..0000000 --- a/html/_static/alabaster.css +++ /dev/null @@ -1,708 +0,0 @@ -@import url("basic.css"); - -/* -- page layout ----------------------------------------------------------- */ - -body { - font-family: Georgia, serif; - font-size: 17px; - background-color: #fff; - color: #000; - margin: 0; - padding: 0; -} - - -div.document { - width: 940px; - margin: 30px auto 0 auto; -} - -div.documentwrapper { - float: left; - width: 100%; -} - -div.bodywrapper { - margin: 0 0 0 220px; -} - -div.sphinxsidebar { - width: 220px; - font-size: 14px; - line-height: 1.5; -} - -hr { - border: 1px solid #B1B4B6; -} - -div.body { - background-color: #fff; - color: #3E4349; - padding: 0 30px 0 30px; -} - -div.body > .section { - text-align: left; -} - -div.footer { - width: 940px; - margin: 20px auto 30px auto; - font-size: 14px; - color: #888; - text-align: right; -} - -div.footer a { - color: #888; -} - -p.caption { - font-family: inherit; - font-size: inherit; -} - - -div.relations { - display: none; -} - - -div.sphinxsidebar { - max-height: 100%; - overflow-y: auto; -} - -div.sphinxsidebar a { - color: #444; - text-decoration: none; - border-bottom: 1px dotted #999; -} - -div.sphinxsidebar a:hover { - border-bottom: 1px solid #999; -} - -div.sphinxsidebarwrapper { - padding: 18px 10px; -} - -div.sphinxsidebarwrapper p.logo { - padding: 0; - margin: -10px 0 0 0px; - text-align: center; -} - -div.sphinxsidebarwrapper h1.logo { - margin-top: -10px; - text-align: center; - margin-bottom: 5px; - text-align: left; -} - -div.sphinxsidebarwrapper h1.logo-name { - margin-top: 0px; -} - -div.sphinxsidebarwrapper p.blurb { - margin-top: 0; - font-style: normal; -} - -div.sphinxsidebar h3, -div.sphinxsidebar h4 { - font-family: Georgia, serif; - color: #444; - font-size: 24px; - font-weight: normal; - margin: 0 0 5px 0; - padding: 0; -} - -div.sphinxsidebar h4 { - font-size: 20px; -} - -div.sphinxsidebar h3 a { - color: #444; -} - -div.sphinxsidebar p.logo a, -div.sphinxsidebar h3 a, -div.sphinxsidebar p.logo a:hover, -div.sphinxsidebar h3 a:hover { - border: none; -} - -div.sphinxsidebar p { - color: #555; - margin: 10px 0; -} - -div.sphinxsidebar ul { - margin: 10px 0; - padding: 0; - color: #000; -} - -div.sphinxsidebar ul li.toctree-l1 > a { - font-size: 120%; -} - -div.sphinxsidebar ul li.toctree-l2 > a { - font-size: 110%; -} - -div.sphinxsidebar input { - border: 1px solid #CCC; - font-family: Georgia, serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox input[type="text"] { - width: 160px; -} - -div.sphinxsidebar .search > div { - display: table-cell; -} - -div.sphinxsidebar hr { - border: none; - height: 1px; - color: #AAA; - background: #AAA; - - text-align: left; - margin-left: 0; - width: 50%; -} - -div.sphinxsidebar .badge { - border-bottom: none; -} - -div.sphinxsidebar .badge:hover { - border-bottom: none; -} - -/* To address an issue with donation coming after search */ -div.sphinxsidebar h3.donation { - margin-top: 10px; -} - -/* -- body styles ----------------------------------------------------------- */ - -a { - color: #004B6B; - text-decoration: underline; -} - -a:hover { - color: #6D4100; - text-decoration: underline; -} - -div.body h1, -div.body h2, -div.body h3, -div.body h4, -div.body h5, -div.body h6 { - font-family: Georgia, serif; - font-weight: normal; - margin: 30px 0px 10px 0px; - padding: 0; -} - -div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } -div.body h2 { font-size: 180%; } -div.body h3 { font-size: 150%; } -div.body h4 { font-size: 130%; } -div.body h5 { font-size: 100%; } -div.body h6 { font-size: 100%; } - -a.headerlink { - color: #DDD; - padding: 0 4px; - text-decoration: none; -} - -a.headerlink:hover { - color: #444; - background: #EAEAEA; -} - -div.body p, div.body dd, div.body li { - line-height: 1.4em; -} - -div.admonition { - margin: 20px 0px; - padding: 10px 30px; - background-color: #EEE; - border: 1px solid #CCC; -} - -div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fafafa; -} - -div.admonition p.admonition-title { - font-family: Georgia, serif; - font-weight: normal; - font-size: 24px; - margin: 0 0 10px 0; - padding: 0; - line-height: 1; -} - -div.admonition p.last { - margin-bottom: 0; -} - -div.highlight { - background-color: #fff; -} - -dt:target, .highlight { - background: #FAF3E8; -} - -div.warning { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.danger { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.error { - background-color: #FCC; - border: 1px solid #FAA; - -moz-box-shadow: 2px 2px 4px #D52C2C; - -webkit-box-shadow: 2px 2px 4px #D52C2C; - box-shadow: 2px 2px 4px #D52C2C; -} - -div.caution { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.attention { - background-color: #FCC; - border: 1px solid #FAA; -} - -div.important { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.note { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.tip { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.hint { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.seealso { - background-color: #EEE; - border: 1px solid #CCC; -} - -div.topic { - background-color: #EEE; -} - -p.admonition-title { - display: inline; -} - -p.admonition-title:after { - content: ":"; -} - -pre, tt, code { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; - font-size: 0.9em; -} - -.hll { - background-color: #FFC; - margin: 0 -12px; - padding: 0 12px; - display: block; -} - -img.screenshot { -} - -tt.descname, tt.descclassname, code.descname, code.descclassname { - font-size: 0.95em; -} - -tt.descname, code.descname { - padding-right: 0.08em; -} - -img.screenshot { - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils { - border: 1px solid #888; - -moz-box-shadow: 2px 2px 4px #EEE; - -webkit-box-shadow: 2px 2px 4px #EEE; - box-shadow: 2px 2px 4px #EEE; -} - -table.docutils td, table.docutils th { - border: 1px solid #888; - padding: 0.25em 0.7em; -} - -table.field-list, table.footnote { - border: none; - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - -table.footnote { - margin: 15px 0; - width: 100%; - border: 1px solid #EEE; - background: #FDFDFD; - font-size: 0.9em; -} - -table.footnote + table.footnote { - margin-top: -15px; - border-top: none; -} - -table.field-list th { - padding: 0 0.8em 0 0; -} - -table.field-list td { - padding: 0; -} - -table.field-list p { - margin-bottom: 0.8em; -} - -/* Cloned from - * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 - */ -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -table.footnote td.label { - width: .1px; - padding: 0.3em 0 0.3em 0.5em; -} - -table.footnote td { - padding: 0.3em 0.5em; -} - -dl { - margin-left: 0; - margin-right: 0; - margin-top: 0; - padding: 0; -} - -dl dd { - margin-left: 30px; -} - -blockquote { - margin: 0 0 0 30px; - padding: 0; -} - -ul, ol { - /* Matches the 30px from the narrow-screen "li > ul" selector below */ - margin: 10px 0 10px 30px; - padding: 0; -} - -pre { - background: #EEE; - padding: 7px 30px; - margin: 15px 0px; - line-height: 1.3em; -} - -div.viewcode-block:target { - background: #ffd; -} - -dl pre, blockquote pre, li pre { - margin-left: 0; - padding-left: 30px; -} - -tt, code { - background-color: #ecf0f3; - color: #222; - /* padding: 1px 2px; */ -} - -tt.xref, code.xref, a tt { - background-color: #FBFBFB; - border-bottom: 1px solid #fff; -} - -a.reference { - text-decoration: none; - border-bottom: 1px dotted #004B6B; -} - -/* Don't put an underline on images */ -a.image-reference, a.image-reference:hover { - border-bottom: none; -} - -a.reference:hover { - border-bottom: 1px solid #6D4100; -} - -a.footnote-reference { - text-decoration: none; - font-size: 0.7em; - vertical-align: top; - border-bottom: 1px dotted #004B6B; -} - -a.footnote-reference:hover { - border-bottom: 1px solid #6D4100; -} - -a:hover tt, a:hover code { - background: #EEE; -} - - -@media screen and (max-width: 870px) { - - div.sphinxsidebar { - display: none; - } - - div.document { - width: 100%; - - } - - div.documentwrapper { - margin-left: 0; - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - } - - div.bodywrapper { - margin-top: 0; - margin-right: 0; - margin-bottom: 0; - margin-left: 0; - } - - ul { - margin-left: 0; - } - - li > ul { - /* Matches the 30px from the "ul, ol" selector above */ - margin-left: 30px; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .bodywrapper { - margin: 0; - } - - .footer { - width: auto; - } - - .github { - display: none; - } - - - -} - - - -@media screen and (max-width: 875px) { - - body { - margin: 0; - padding: 20px 30px; - } - - div.documentwrapper { - float: none; - background: #fff; - } - - div.sphinxsidebar { - display: block; - float: none; - width: 102.5%; - margin: 50px -30px -20px -30px; - padding: 10px 20px; - background: #333; - color: #FFF; - } - - div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, - div.sphinxsidebar h3 a { - color: #fff; - } - - div.sphinxsidebar a { - color: #AAA; - } - - div.sphinxsidebar p.logo { - display: none; - } - - div.document { - width: 100%; - margin: 0; - } - - div.footer { - display: none; - } - - div.bodywrapper { - margin: 0; - } - - div.body { - min-height: 0; - padding: 0; - } - - .rtd_doc_footer { - display: none; - } - - .document { - width: auto; - } - - .footer { - width: auto; - } - - .footer { - width: auto; - } - - .github { - display: none; - } -} - - -/* misc. */ - -.revsys-inline { - display: none!important; -} - -/* Hide ugly table cell borders in ..bibliography:: directive output */ -table.docutils.citation, table.docutils.citation td, table.docutils.citation th { - border: none; - /* Below needed in some edge cases; if not applied, bottom shadows appear */ - -moz-box-shadow: none; - -webkit-box-shadow: none; - box-shadow: none; -} - - -/* relbar */ - -.related { - line-height: 30px; - width: 100%; - font-size: 0.9rem; -} - -.related.top { - border-bottom: 1px solid #EEE; - margin-bottom: 20px; -} - -.related.bottom { - border-top: 1px solid #EEE; -} - -.related ul { - padding: 0; - margin: 0; - list-style: none; -} - -.related li { - display: inline; -} - -nav#rellinks { - float: right; -} - -nav#rellinks li+li:before { - content: "|"; -} - -nav#breadcrumbs li+li:before { - content: "\00BB"; -} - -/* Hide certain items when printing */ -@media print { - div.related { - display: none; - } -} \ No newline at end of file diff --git a/html/_static/basic.css b/html/_static/basic.css deleted file mode 100644 index e5179b7..0000000 --- a/html/_static/basic.css +++ /dev/null @@ -1,925 +0,0 @@ -/* - * basic.css - * ~~~~~~~~~ - * - * Sphinx stylesheet -- basic theme. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -/* -- main layout ----------------------------------------------------------- */ - -div.clearer { - clear: both; -} - -div.section::after { - display: block; - content: ''; - clear: left; -} - -/* -- relbar ---------------------------------------------------------------- */ - -div.related { - width: 100%; - font-size: 90%; -} - -div.related h3 { - display: none; -} - -div.related ul { - margin: 0; - padding: 0 0 0 10px; - list-style: none; -} - -div.related li { - display: inline; -} - -div.related li.right { - float: right; - margin-right: 5px; -} - -/* -- sidebar --------------------------------------------------------------- */ - -div.sphinxsidebarwrapper { - padding: 10px 5px 0 10px; -} - -div.sphinxsidebar { - float: left; - width: 230px; - margin-left: -100%; - font-size: 90%; - word-wrap: break-word; - overflow-wrap : break-word; -} - -div.sphinxsidebar ul { - list-style: none; -} - -div.sphinxsidebar ul ul, -div.sphinxsidebar ul.want-points { - margin-left: 20px; - list-style: square; -} - -div.sphinxsidebar ul ul { - margin-top: 0; - margin-bottom: 0; -} - -div.sphinxsidebar form { - margin-top: 10px; -} - -div.sphinxsidebar input { - border: 1px solid #98dbcc; - font-family: sans-serif; - font-size: 1em; -} - -div.sphinxsidebar #searchbox form.search { - overflow: hidden; -} - -div.sphinxsidebar #searchbox input[type="text"] { - float: left; - width: 80%; - padding: 0.25em; - box-sizing: border-box; -} - -div.sphinxsidebar #searchbox input[type="submit"] { - float: left; - width: 20%; - border-left: none; - padding: 0.25em; - box-sizing: border-box; -} - - -img { - border: 0; - max-width: 100%; -} - -/* -- search page ----------------------------------------------------------- */ - -ul.search { - margin: 10px 0 0 20px; - padding: 0; -} - -ul.search li { - padding: 5px 0 5px 20px; - background-image: url(file.png); - background-repeat: no-repeat; - background-position: 0 7px; -} - -ul.search li a { - font-weight: bold; -} - -ul.search li p.context { - color: #888; - margin: 2px 0 0 30px; - text-align: left; -} - -ul.keywordmatches li.goodmatch a { - font-weight: bold; -} - -/* -- index page ------------------------------------------------------------ */ - -table.contentstable { - width: 90%; - margin-left: auto; - margin-right: auto; -} - -table.contentstable p.biglink { - line-height: 150%; -} - -a.biglink { - font-size: 1.3em; -} - -span.linkdescr { - font-style: italic; - padding-top: 5px; - font-size: 90%; -} - -/* -- general index --------------------------------------------------------- */ - -table.indextable { - width: 100%; -} - -table.indextable td { - text-align: left; - vertical-align: top; -} - -table.indextable ul { - margin-top: 0; - margin-bottom: 0; - list-style-type: none; -} - -table.indextable > tbody > tr > td > ul { - padding-left: 0em; -} - -table.indextable tr.pcap { - height: 10px; -} - -table.indextable tr.cap { - margin-top: 10px; - background-color: #f2f2f2; -} - -img.toggler { - margin-right: 3px; - margin-top: 3px; - cursor: pointer; -} - -div.modindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -div.genindex-jumpbox { - border-top: 1px solid #ddd; - border-bottom: 1px solid #ddd; - margin: 1em 0 1em 0; - padding: 0.4em; -} - -/* -- domain module index --------------------------------------------------- */ - -table.modindextable td { - padding: 2px; - border-collapse: collapse; -} - -/* -- general body styles --------------------------------------------------- */ - -div.body { - min-width: inherit; - max-width: 800px; -} - -div.body p, div.body dd, div.body li, div.body blockquote { - -moz-hyphens: auto; - -ms-hyphens: auto; - -webkit-hyphens: auto; - hyphens: auto; -} - -a.headerlink { - visibility: hidden; -} - -a:visited { - color: #551A8B; -} - -h1:hover > a.headerlink, -h2:hover > a.headerlink, -h3:hover > a.headerlink, -h4:hover > a.headerlink, -h5:hover > a.headerlink, -h6:hover > a.headerlink, -dt:hover > a.headerlink, -caption:hover > a.headerlink, -p.caption:hover > a.headerlink, -div.code-block-caption:hover > a.headerlink { - visibility: visible; -} - -div.body p.caption { - text-align: inherit; -} - -div.body td { - text-align: left; -} - -.first { - margin-top: 0 !important; -} - -p.rubric { - margin-top: 30px; - font-weight: bold; -} - -img.align-left, figure.align-left, .figure.align-left, object.align-left { - clear: left; - float: left; - margin-right: 1em; -} - -img.align-right, figure.align-right, .figure.align-right, object.align-right { - clear: right; - float: right; - margin-left: 1em; -} - -img.align-center, figure.align-center, .figure.align-center, object.align-center { - display: block; - margin-left: auto; - margin-right: auto; -} - -img.align-default, figure.align-default, .figure.align-default { - display: block; - margin-left: auto; - margin-right: auto; -} - -.align-left { - text-align: left; -} - -.align-center { - text-align: center; -} - -.align-default { - text-align: center; -} - -.align-right { - text-align: right; -} - -/* -- sidebars -------------------------------------------------------------- */ - -div.sidebar, -aside.sidebar { - margin: 0 0 0.5em 1em; - border: 1px solid #ddb; - padding: 7px; - background-color: #ffe; - width: 40%; - float: right; - clear: right; - overflow-x: auto; -} - -p.sidebar-title { - font-weight: bold; -} - -nav.contents, -aside.topic, -div.admonition, div.topic, blockquote { - clear: left; -} - -/* -- topics ---------------------------------------------------------------- */ - -nav.contents, -aside.topic, -div.topic { - border: 1px solid #ccc; - padding: 7px; - margin: 10px 0 10px 0; -} - -p.topic-title { - font-size: 1.1em; - font-weight: bold; - margin-top: 10px; -} - -/* -- admonitions ----------------------------------------------------------- */ - -div.admonition { - margin-top: 10px; - margin-bottom: 10px; - padding: 7px; -} - -div.admonition dt { - font-weight: bold; -} - -p.admonition-title { - margin: 0px 10px 5px 0px; - font-weight: bold; -} - -div.body p.centered { - text-align: center; - margin-top: 25px; -} - -/* -- content of sidebars/topics/admonitions -------------------------------- */ - -div.sidebar > :last-child, -aside.sidebar > :last-child, -nav.contents > :last-child, -aside.topic > :last-child, -div.topic > :last-child, -div.admonition > :last-child { - margin-bottom: 0; -} - -div.sidebar::after, -aside.sidebar::after, -nav.contents::after, -aside.topic::after, -div.topic::after, -div.admonition::after, -blockquote::after { - display: block; - content: ''; - clear: both; -} - -/* -- tables ---------------------------------------------------------------- */ - -table.docutils { - margin-top: 10px; - margin-bottom: 10px; - border: 0; - border-collapse: collapse; -} - -table.align-center { - margin-left: auto; - margin-right: auto; -} - -table.align-default { - margin-left: auto; - margin-right: auto; -} - -table caption span.caption-number { - font-style: italic; -} - -table caption span.caption-text { -} - -table.docutils td, table.docutils th { - padding: 1px 8px 1px 5px; - border-top: 0; - border-left: 0; - border-right: 0; - border-bottom: 1px solid #aaa; -} - -th { - text-align: left; - padding-right: 5px; -} - -table.citation { - border-left: solid 1px gray; - margin-left: 1px; -} - -table.citation td { - border-bottom: none; -} - -th > :first-child, -td > :first-child { - margin-top: 0px; -} - -th > :last-child, -td > :last-child { - margin-bottom: 0px; -} - -/* -- figures --------------------------------------------------------------- */ - -div.figure, figure { - margin: 0.5em; - padding: 0.5em; -} - -div.figure p.caption, figcaption { - padding: 0.3em; -} - -div.figure p.caption span.caption-number, -figcaption span.caption-number { - font-style: italic; -} - -div.figure p.caption span.caption-text, -figcaption span.caption-text { -} - -/* -- field list styles ----------------------------------------------------- */ - -table.field-list td, table.field-list th { - border: 0 !important; -} - -.field-list ul { - margin: 0; - padding-left: 1em; -} - -.field-list p { - margin: 0; -} - -.field-name { - -moz-hyphens: manual; - -ms-hyphens: manual; - -webkit-hyphens: manual; - hyphens: manual; -} - -/* -- hlist styles ---------------------------------------------------------- */ - -table.hlist { - margin: 1em 0; -} - -table.hlist td { - vertical-align: top; -} - -/* -- object description styles --------------------------------------------- */ - -.sig { - font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; -} - -.sig-name, code.descname { - background-color: transparent; - font-weight: bold; -} - -.sig-name { - font-size: 1.1em; -} - -code.descname { - font-size: 1.2em; -} - -.sig-prename, code.descclassname { - background-color: transparent; -} - -.optional { - font-size: 1.3em; -} - -.sig-paren { - font-size: larger; -} - -.sig-param.n { - font-style: italic; -} - -/* C++ specific styling */ - -.sig-inline.c-texpr, -.sig-inline.cpp-texpr { - font-family: unset; -} - -.sig.c .k, .sig.c .kt, -.sig.cpp .k, .sig.cpp .kt { - color: #0033B3; -} - -.sig.c .m, -.sig.cpp .m { - color: #1750EB; -} - -.sig.c .s, .sig.c .sc, -.sig.cpp .s, .sig.cpp .sc { - color: #067D17; -} - - -/* -- other body styles ----------------------------------------------------- */ - -ol.arabic { - list-style: decimal; -} - -ol.loweralpha { - list-style: lower-alpha; -} - -ol.upperalpha { - list-style: upper-alpha; -} - -ol.lowerroman { - list-style: lower-roman; -} - -ol.upperroman { - list-style: upper-roman; -} - -:not(li) > ol > li:first-child > :first-child, -:not(li) > ul > li:first-child > :first-child { - margin-top: 0px; -} - -:not(li) > ol > li:last-child > :last-child, -:not(li) > ul > li:last-child > :last-child { - margin-bottom: 0px; -} - -ol.simple ol p, -ol.simple ul p, -ul.simple ol p, -ul.simple ul p { - margin-top: 0; -} - -ol.simple > li:not(:first-child) > p, -ul.simple > li:not(:first-child) > p { - margin-top: 0; -} - -ol.simple p, -ul.simple p { - margin-bottom: 0; -} - -aside.footnote > span, -div.citation > span { - float: left; -} -aside.footnote > span:last-of-type, -div.citation > span:last-of-type { - padding-right: 0.5em; -} -aside.footnote > p { - margin-left: 2em; -} -div.citation > p { - margin-left: 4em; -} -aside.footnote > p:last-of-type, -div.citation > p:last-of-type { - margin-bottom: 0em; -} -aside.footnote > p:last-of-type:after, -div.citation > p:last-of-type:after { - content: ""; - clear: both; -} - -dl.field-list { - display: grid; - grid-template-columns: fit-content(30%) auto; -} - -dl.field-list > dt { - font-weight: bold; - word-break: break-word; - padding-left: 0.5em; - padding-right: 5px; -} - -dl.field-list > dd { - padding-left: 0.5em; - margin-top: 0em; - margin-left: 0em; - margin-bottom: 0em; -} - -dl { - margin-bottom: 15px; -} - -dd > :first-child { - margin-top: 0px; -} - -dd ul, dd table { - margin-bottom: 10px; -} - -dd { - margin-top: 3px; - margin-bottom: 10px; - margin-left: 30px; -} - -.sig dd { - margin-top: 0px; - margin-bottom: 0px; -} - -.sig dl { - margin-top: 0px; - margin-bottom: 0px; -} - -dl > dd:last-child, -dl > dd:last-child > :last-child { - margin-bottom: 0; -} - -dt:target, span.highlighted { - background-color: #fbe54e; -} - -rect.highlighted { - fill: #fbe54e; -} - -dl.glossary dt { - font-weight: bold; - font-size: 1.1em; -} - -.versionmodified { - font-style: italic; -} - -.system-message { - background-color: #fda; - padding: 5px; - border: 3px solid red; -} - -.footnote:target { - background-color: #ffa; -} - -.line-block { - display: block; - margin-top: 1em; - margin-bottom: 1em; -} - -.line-block .line-block { - margin-top: 0; - margin-bottom: 0; - margin-left: 1.5em; -} - -.guilabel, .menuselection { - font-family: sans-serif; -} - -.accelerator { - text-decoration: underline; -} - -.classifier { - font-style: oblique; -} - -.classifier:before { - font-style: normal; - margin: 0 0.5em; - content: ":"; - display: inline-block; -} - -abbr, acronym { - border-bottom: dotted 1px; - cursor: help; -} - -.translated { - background-color: rgba(207, 255, 207, 0.2) -} - -.untranslated { - background-color: rgba(255, 207, 207, 0.2) -} - -/* -- code displays --------------------------------------------------------- */ - -pre { - overflow: auto; - overflow-y: hidden; /* fixes display issues on Chrome browsers */ -} - -pre, div[class*="highlight-"] { - clear: both; -} - -span.pre { - -moz-hyphens: none; - -ms-hyphens: none; - -webkit-hyphens: none; - hyphens: none; - white-space: nowrap; -} - -div[class*="highlight-"] { - margin: 1em 0; -} - -td.linenos pre { - border: 0; - background-color: transparent; - color: #aaa; -} - -table.highlighttable { - display: block; -} - -table.highlighttable tbody { - display: block; -} - -table.highlighttable tr { - display: flex; -} - -table.highlighttable td { - margin: 0; - padding: 0; -} - -table.highlighttable td.linenos { - padding-right: 0.5em; -} - -table.highlighttable td.code { - flex: 1; - overflow: hidden; -} - -.highlight .hll { - display: block; -} - -div.highlight pre, -table.highlighttable pre { - margin: 0; -} - -div.code-block-caption + div { - margin-top: 0; -} - -div.code-block-caption { - margin-top: 1em; - padding: 2px 5px; - font-size: small; -} - -div.code-block-caption code { - background-color: transparent; -} - -table.highlighttable td.linenos, -span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ - user-select: none; - -webkit-user-select: text; /* Safari fallback only */ - -webkit-user-select: none; /* Chrome/Safari */ - -moz-user-select: none; /* Firefox */ - -ms-user-select: none; /* IE10+ */ -} - -div.code-block-caption span.caption-number { - padding: 0.1em 0.3em; - font-style: italic; -} - -div.code-block-caption span.caption-text { -} - -div.literal-block-wrapper { - margin: 1em 0; -} - -code.xref, a code { - background-color: transparent; - font-weight: bold; -} - -h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { - background-color: transparent; -} - -.viewcode-link { - float: right; -} - -.viewcode-back { - float: right; - font-family: sans-serif; -} - -div.viewcode-block:target { - margin: -1px -10px; - padding: 0 10px; -} - -/* -- math display ---------------------------------------------------------- */ - -img.math { - vertical-align: middle; -} - -div.body div.math p { - text-align: center; -} - -span.eqno { - float: right; -} - -span.eqno a.headerlink { - position: absolute; - z-index: 1; -} - -div.math:hover a.headerlink { - visibility: visible; -} - -/* -- printout stylesheet --------------------------------------------------- */ - -@media print { - div.document, - div.documentwrapper, - div.bodywrapper { - margin: 0 !important; - width: 100%; - } - - div.sphinxsidebar, - div.related, - div.footer, - #top-link { - display: none; - } -} \ No newline at end of file diff --git a/html/_static/custom.css b/html/_static/custom.css deleted file mode 100644 index 2a924f1..0000000 --- a/html/_static/custom.css +++ /dev/null @@ -1 +0,0 @@ -/* This file intentionally left blank. */ diff --git a/html/_static/doctools.js b/html/_static/doctools.js deleted file mode 100644 index 4d67807..0000000 --- a/html/_static/doctools.js +++ /dev/null @@ -1,156 +0,0 @@ -/* - * doctools.js - * ~~~~~~~~~~~ - * - * Base JavaScript utilities for all Sphinx HTML documentation. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ - "TEXTAREA", - "INPUT", - "SELECT", - "BUTTON", -]); - -const _ready = (callback) => { - if (document.readyState !== "loading") { - callback(); - } else { - document.addEventListener("DOMContentLoaded", callback); - } -}; - -/** - * Small JavaScript module for the documentation. - */ -const Documentation = { - init: () => { - Documentation.initDomainIndexTable(); - Documentation.initOnKeyListeners(); - }, - - /** - * i18n support - */ - TRANSLATIONS: {}, - PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), - LOCALE: "unknown", - - // gettext and ngettext don't access this so that the functions - // can safely bound to a different name (_ = Documentation.gettext) - gettext: (string) => { - const translated = Documentation.TRANSLATIONS[string]; - switch (typeof translated) { - case "undefined": - return string; // no translation - case "string": - return translated; // translation exists - default: - return translated[0]; // (singular, plural) translation tuple exists - } - }, - - ngettext: (singular, plural, n) => { - const translated = Documentation.TRANSLATIONS[singular]; - if (typeof translated !== "undefined") - return translated[Documentation.PLURAL_EXPR(n)]; - return n === 1 ? singular : plural; - }, - - addTranslations: (catalog) => { - Object.assign(Documentation.TRANSLATIONS, catalog.messages); - Documentation.PLURAL_EXPR = new Function( - "n", - `return (${catalog.plural_expr})` - ); - Documentation.LOCALE = catalog.locale; - }, - - /** - * helper function to focus on search bar - */ - focusSearchBar: () => { - document.querySelectorAll("input[name=q]")[0]?.focus(); - }, - - /** - * Initialise the domain index toggle buttons - */ - initDomainIndexTable: () => { - const toggler = (el) => { - const idNumber = el.id.substr(7); - const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); - if (el.src.substr(-9) === "minus.png") { - el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; - toggledRows.forEach((el) => (el.style.display = "none")); - } else { - el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; - toggledRows.forEach((el) => (el.style.display = "")); - } - }; - - const togglerElements = document.querySelectorAll("img.toggler"); - togglerElements.forEach((el) => - el.addEventListener("click", (event) => toggler(event.currentTarget)) - ); - togglerElements.forEach((el) => (el.style.display = "")); - if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); - }, - - initOnKeyListeners: () => { - // only install a listener if it is really needed - if ( - !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && - !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS - ) - return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.altKey || event.ctrlKey || event.metaKey) return; - - if (!event.shiftKey) { - switch (event.key) { - case "ArrowLeft": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const prevLink = document.querySelector('link[rel="prev"]'); - if (prevLink && prevLink.href) { - window.location.href = prevLink.href; - event.preventDefault(); - } - break; - case "ArrowRight": - if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; - - const nextLink = document.querySelector('link[rel="next"]'); - if (nextLink && nextLink.href) { - window.location.href = nextLink.href; - event.preventDefault(); - } - break; - } - } - - // some keyboard layouts may need Shift to get / - switch (event.key) { - case "/": - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; - Documentation.focusSearchBar(); - event.preventDefault(); - } - }); - }, -}; - -// quick alias for translations -const _ = Documentation.gettext; - -_ready(Documentation.init); diff --git a/html/_static/documentation_options.js b/html/_static/documentation_options.js deleted file mode 100644 index 7e4c114..0000000 --- a/html/_static/documentation_options.js +++ /dev/null @@ -1,13 +0,0 @@ -const DOCUMENTATION_OPTIONS = { - VERSION: '', - LANGUAGE: 'en', - COLLAPSE_INDEX: false, - BUILDER: 'html', - FILE_SUFFIX: '.html', - LINK_SUFFIX: '.html', - HAS_SOURCE: true, - SOURCELINK_SUFFIX: '.txt', - NAVIGATION_WITH_KEYS: false, - SHOW_SEARCH_SUMMARY: true, - ENABLE_SEARCH_SHORTCUTS: true, -}; \ No newline at end of file diff --git a/html/_static/file.png b/html/_static/file.png deleted file mode 100644 index a858a41..0000000 Binary files a/html/_static/file.png and /dev/null differ diff --git a/html/_static/language_data.js b/html/_static/language_data.js deleted file mode 100644 index 367b8ed..0000000 --- a/html/_static/language_data.js +++ /dev/null @@ -1,199 +0,0 @@ -/* - * language_data.js - * ~~~~~~~~~~~~~~~~ - * - * This script contains the language-specific data used by searchtools.js, - * namely the list of stopwords, stemmer, scorer and splitter. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ - -var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; - - -/* Non-minified version is copied as a separate JS file, if available */ - -/** - * Porter Stemmer - */ -var Stemmer = function() { - - var step2list = { - ational: 'ate', - tional: 'tion', - enci: 'ence', - anci: 'ance', - izer: 'ize', - bli: 'ble', - alli: 'al', - entli: 'ent', - eli: 'e', - ousli: 'ous', - ization: 'ize', - ation: 'ate', - ator: 'ate', - alism: 'al', - iveness: 'ive', - fulness: 'ful', - ousness: 'ous', - aliti: 'al', - iviti: 'ive', - biliti: 'ble', - logi: 'log' - }; - - var step3list = { - icate: 'ic', - ative: '', - alize: 'al', - iciti: 'ic', - ical: 'ic', - ful: '', - ness: '' - }; - - var c = "[^aeiou]"; // consonant - var v = "[aeiouy]"; // vowel - var C = c + "[^aeiouy]*"; // consonant sequence - var V = v + "[aeiou]*"; // vowel sequence - - var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 - var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 - var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 - var s_v = "^(" + C + ")?" + v; // vowel in stem - - this.stemWord = function (w) { - var stem; - var suffix; - var firstch; - var origword = w; - - if (w.length < 3) - return w; - - var re; - var re2; - var re3; - var re4; - - firstch = w.substr(0,1); - if (firstch == "y") - w = firstch.toUpperCase() + w.substr(1); - - // Step 1a - re = /^(.+?)(ss|i)es$/; - re2 = /^(.+?)([^s])s$/; - - if (re.test(w)) - w = w.replace(re,"$1$2"); - else if (re2.test(w)) - w = w.replace(re2,"$1$2"); - - // Step 1b - re = /^(.+?)eed$/; - re2 = /^(.+?)(ed|ing)$/; - if (re.test(w)) { - var fp = re.exec(w); - re = new RegExp(mgr0); - if (re.test(fp[1])) { - re = /.$/; - w = w.replace(re,""); - } - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1]; - re2 = new RegExp(s_v); - if (re2.test(stem)) { - w = stem; - re2 = /(at|bl|iz)$/; - re3 = new RegExp("([^aeiouylsz])\\1$"); - re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re2.test(w)) - w = w + "e"; - else if (re3.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - else if (re4.test(w)) - w = w + "e"; - } - } - - // Step 1c - re = /^(.+?)y$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(s_v); - if (re.test(stem)) - w = stem + "i"; - } - - // Step 2 - re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step2list[suffix]; - } - - // Step 3 - re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - suffix = fp[2]; - re = new RegExp(mgr0); - if (re.test(stem)) - w = stem + step3list[suffix]; - } - - // Step 4 - re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; - re2 = /^(.+?)(s|t)(ion)$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - if (re.test(stem)) - w = stem; - } - else if (re2.test(w)) { - var fp = re2.exec(w); - stem = fp[1] + fp[2]; - re2 = new RegExp(mgr1); - if (re2.test(stem)) - w = stem; - } - - // Step 5 - re = /^(.+?)e$/; - if (re.test(w)) { - var fp = re.exec(w); - stem = fp[1]; - re = new RegExp(mgr1); - re2 = new RegExp(meq1); - re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); - if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) - w = stem; - } - re = /ll$/; - re2 = new RegExp(mgr1); - if (re.test(w) && re2.test(w)) { - re = /.$/; - w = w.replace(re,""); - } - - // and turn initial Y back to y - if (firstch == "y") - w = firstch.toLowerCase() + w.substr(1); - return w; - } -} - diff --git a/html/_static/minus.png b/html/_static/minus.png deleted file mode 100644 index d96755f..0000000 Binary files a/html/_static/minus.png and /dev/null differ diff --git a/html/_static/plus.png b/html/_static/plus.png deleted file mode 100644 index 7107cec..0000000 Binary files a/html/_static/plus.png and /dev/null differ diff --git a/html/_static/pygments.css b/html/_static/pygments.css deleted file mode 100644 index 07454c6..0000000 --- a/html/_static/pygments.css +++ /dev/null @@ -1,83 +0,0 @@ -pre { line-height: 125%; } -td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } -td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } -.highlight .hll { background-color: #ffffcc } -.highlight { background: #f8f8f8; } -.highlight .c { color: #8f5902; font-style: italic } /* Comment */ -.highlight .err { color: #a40000; border: 1px solid #ef2929 } /* Error */ -.highlight .g { color: #000000 } /* Generic */ -.highlight .k { color: #004461; font-weight: bold } /* Keyword */ -.highlight .l { color: #000000 } /* Literal */ -.highlight .n { color: #000000 } /* Name */ -.highlight .o { color: #582800 } /* Operator */ -.highlight .x { color: #000000 } /* Other */ -.highlight .p { color: #000000; font-weight: bold } /* Punctuation */ -.highlight .ch { color: #8f5902; font-style: italic } /* Comment.Hashbang */ -.highlight .cm { color: #8f5902; font-style: italic } /* Comment.Multiline */ -.highlight .cp { color: #8f5902 } /* Comment.Preproc */ -.highlight .cpf { color: #8f5902; font-style: italic } /* Comment.PreprocFile */ -.highlight .c1 { color: #8f5902; font-style: italic } /* Comment.Single */ -.highlight .cs { color: #8f5902; font-style: italic } /* Comment.Special */ -.highlight .gd { color: #a40000 } /* Generic.Deleted */ -.highlight .ge { color: #000000; font-style: italic } /* Generic.Emph */ -.highlight .gr { color: #ef2929 } /* Generic.Error */ -.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ -.highlight .gi { color: #00A000 } /* Generic.Inserted */ -.highlight .go { color: #888888 } /* Generic.Output */ -.highlight .gp { color: #745334 } /* Generic.Prompt */ -.highlight .gs { color: #000000; font-weight: bold } /* Generic.Strong */ -.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ -.highlight .gt { color: #a40000; font-weight: bold } /* Generic.Traceback */ -.highlight .kc { color: #004461; font-weight: bold } /* Keyword.Constant */ -.highlight .kd { color: #004461; font-weight: bold } /* Keyword.Declaration */ -.highlight .kn { color: #004461; font-weight: bold } /* Keyword.Namespace */ -.highlight .kp { color: #004461; font-weight: bold } /* Keyword.Pseudo */ -.highlight .kr { color: #004461; font-weight: bold } /* Keyword.Reserved */ -.highlight .kt { color: #004461; font-weight: bold } /* Keyword.Type */ -.highlight .ld { color: #000000 } /* Literal.Date */ -.highlight .m { color: #990000 } /* Literal.Number */ -.highlight .s { color: #4e9a06 } /* Literal.String */ -.highlight .na { color: #c4a000 } /* Name.Attribute */ -.highlight .nb { color: #004461 } /* Name.Builtin */ -.highlight .nc { color: #000000 } /* Name.Class */ -.highlight .no { color: #000000 } /* Name.Constant */ -.highlight .nd { color: #888888 } /* Name.Decorator */ -.highlight .ni { color: #ce5c00 } /* Name.Entity */ -.highlight .ne { color: #cc0000; font-weight: bold } /* Name.Exception */ -.highlight .nf { color: #000000 } /* Name.Function */ -.highlight .nl { color: #f57900 } /* Name.Label */ -.highlight .nn { color: #000000 } /* Name.Namespace */ -.highlight .nx { color: #000000 } /* Name.Other */ -.highlight .py { color: #000000 } /* Name.Property */ -.highlight .nt { color: #004461; font-weight: bold } /* Name.Tag */ -.highlight .nv { color: #000000 } /* Name.Variable */ -.highlight .ow { color: #004461; font-weight: bold } /* Operator.Word */ -.highlight .pm { color: #000000; font-weight: bold } /* Punctuation.Marker */ -.highlight .w { color: #f8f8f8 } /* Text.Whitespace */ -.highlight .mb { color: #990000 } /* Literal.Number.Bin */ -.highlight .mf { color: #990000 } /* Literal.Number.Float */ -.highlight .mh { color: #990000 } /* Literal.Number.Hex */ -.highlight .mi { color: #990000 } /* Literal.Number.Integer */ -.highlight .mo { color: #990000 } /* Literal.Number.Oct */ -.highlight .sa { color: #4e9a06 } /* Literal.String.Affix */ -.highlight .sb { color: #4e9a06 } /* Literal.String.Backtick */ -.highlight .sc { color: #4e9a06 } /* Literal.String.Char */ -.highlight .dl { color: #4e9a06 } /* Literal.String.Delimiter */ -.highlight .sd { color: #8f5902; font-style: italic } /* Literal.String.Doc */ -.highlight .s2 { color: #4e9a06 } /* Literal.String.Double */ -.highlight .se { color: #4e9a06 } /* Literal.String.Escape */ -.highlight .sh { color: #4e9a06 } /* Literal.String.Heredoc */ -.highlight .si { color: #4e9a06 } /* Literal.String.Interpol */ -.highlight .sx { color: #4e9a06 } /* Literal.String.Other */ -.highlight .sr { color: #4e9a06 } /* Literal.String.Regex */ -.highlight .s1 { color: #4e9a06 } /* Literal.String.Single */ -.highlight .ss { color: #4e9a06 } /* Literal.String.Symbol */ -.highlight .bp { color: #3465a4 } /* Name.Builtin.Pseudo */ -.highlight .fm { color: #000000 } /* Name.Function.Magic */ -.highlight .vc { color: #000000 } /* Name.Variable.Class */ -.highlight .vg { color: #000000 } /* Name.Variable.Global */ -.highlight .vi { color: #000000 } /* Name.Variable.Instance */ -.highlight .vm { color: #000000 } /* Name.Variable.Magic */ -.highlight .il { color: #990000 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/html/_static/searchtools.js b/html/_static/searchtools.js deleted file mode 100644 index 92da3f8..0000000 --- a/html/_static/searchtools.js +++ /dev/null @@ -1,619 +0,0 @@ -/* - * searchtools.js - * ~~~~~~~~~~~~~~~~ - * - * Sphinx JavaScript utilities for the full-text search. - * - * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. - * :license: BSD, see LICENSE for details. - * - */ -"use strict"; - -/** - * Simple result scoring code. - */ -if (typeof Scorer === "undefined") { - var Scorer = { - // Implement the following function to further tweak the score for each result - // The function takes a result array [docname, title, anchor, descr, score, filename] - // and returns the new score. - /* - score: result => { - const [docname, title, anchor, descr, score, filename] = result - return score - }, - */ - - // query matches the full name of an object - objNameMatch: 11, - // or matches in the last dotted part of the object name - objPartialMatch: 6, - // Additive scores depending on the priority of the object - objPrio: { - 0: 15, // used to be importantResults - 1: 5, // used to be objectResults - 2: -5, // used to be unimportantResults - }, - // Used when the priority is not in the mapping. - objPrioDefault: 0, - - // query found in title - title: 15, - partialTitle: 7, - // query found in terms - term: 5, - partialTerm: 2, - }; -} - -const _removeChildren = (element) => { - while (element && element.lastChild) element.removeChild(element.lastChild); -}; - -/** - * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping - */ -const _escapeRegExp = (string) => - string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string - -const _displayItem = (item, searchTerms, highlightTerms) => { - const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; - const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; - const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; - const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; - const contentRoot = document.documentElement.dataset.content_root; - - const [docName, title, anchor, descr, score, _filename] = item; - - let listItem = document.createElement("li"); - let requestUrl; - let linkUrl; - if (docBuilder === "dirhtml") { - // dirhtml builder - let dirname = docName + "/"; - if (dirname.match(/\/index\/$/)) - dirname = dirname.substring(0, dirname.length - 6); - else if (dirname === "index/") dirname = ""; - requestUrl = contentRoot + dirname; - linkUrl = requestUrl; - } else { - // normal html builders - requestUrl = contentRoot + docName + docFileSuffix; - linkUrl = docName + docLinkSuffix; - } - let linkEl = listItem.appendChild(document.createElement("a")); - linkEl.href = linkUrl + anchor; - linkEl.dataset.score = score; - linkEl.innerHTML = title; - if (descr) { - listItem.appendChild(document.createElement("span")).innerHTML = - " (" + descr + ")"; - // highlight search terms in the description - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - } - else if (showSearchSummary) - fetch(requestUrl) - .then((responseData) => responseData.text()) - .then((data) => { - if (data) - listItem.appendChild( - Search.makeSearchSummary(data, searchTerms, anchor) - ); - // highlight search terms in the summary - if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js - highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); - }); - Search.output.appendChild(listItem); -}; -const _finishSearch = (resultCount) => { - Search.stopPulse(); - Search.title.innerText = _("Search Results"); - if (!resultCount) - Search.status.innerText = Documentation.gettext( - "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." - ); - else - Search.status.innerText = _( - "Search finished, found ${resultCount} page(s) matching the search query." - ).replace('${resultCount}', resultCount); -}; -const _displayNextItem = ( - results, - resultCount, - searchTerms, - highlightTerms, -) => { - // results left, load the summary and display it - // this is intended to be dynamic (don't sub resultsCount) - if (results.length) { - _displayItem(results.pop(), searchTerms, highlightTerms); - setTimeout( - () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), - 5 - ); - } - // search finished, update title and status message - else _finishSearch(resultCount); -}; -// Helper function used by query() to order search results. -// Each input is an array of [docname, title, anchor, descr, score, filename]. -// Order the results by score (in opposite order of appearance, since the -// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. -const _orderResultsByScoreThenName = (a, b) => { - const leftScore = a[4]; - const rightScore = b[4]; - if (leftScore === rightScore) { - // same score: sort alphabetically - const leftTitle = a[1].toLowerCase(); - const rightTitle = b[1].toLowerCase(); - if (leftTitle === rightTitle) return 0; - return leftTitle > rightTitle ? -1 : 1; // inverted is intentional - } - return leftScore > rightScore ? 1 : -1; -}; - -/** - * Default splitQuery function. Can be overridden in ``sphinx.search`` with a - * custom function per language. - * - * The regular expression works by splitting the string on consecutive characters - * that are not Unicode letters, numbers, underscores, or emoji characters. - * This is the same as ``\W+`` in Python, preserving the surrogate pair area. - */ -if (typeof splitQuery === "undefined") { - var splitQuery = (query) => query - .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) - .filter(term => term) // remove remaining empty strings -} - -/** - * Search Module - */ -const Search = { - _index: null, - _queued_query: null, - _pulse_status: -1, - - htmlToText: (htmlString, anchor) => { - const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); - for (const removalQuery of [".headerlinks", "script", "style"]) { - htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); - } - if (anchor) { - const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); - if (anchorContent) return anchorContent.textContent; - - console.warn( - `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` - ); - } - - // if anchor not specified or not found, fall back to main content - const docContent = htmlElement.querySelector('[role="main"]'); - if (docContent) return docContent.textContent; - - console.warn( - "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." - ); - return ""; - }, - - init: () => { - const query = new URLSearchParams(window.location.search).get("q"); - document - .querySelectorAll('input[name="q"]') - .forEach((el) => (el.value = query)); - if (query) Search.performSearch(query); - }, - - loadIndex: (url) => - (document.body.appendChild(document.createElement("script")).src = url), - - setIndex: (index) => { - Search._index = index; - if (Search._queued_query !== null) { - const query = Search._queued_query; - Search._queued_query = null; - Search.query(query); - } - }, - - hasIndex: () => Search._index !== null, - - deferQuery: (query) => (Search._queued_query = query), - - stopPulse: () => (Search._pulse_status = -1), - - startPulse: () => { - if (Search._pulse_status >= 0) return; - - const pulse = () => { - Search._pulse_status = (Search._pulse_status + 1) % 4; - Search.dots.innerText = ".".repeat(Search._pulse_status); - if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); - }; - pulse(); - }, - - /** - * perform a search for something (or wait until index is loaded) - */ - performSearch: (query) => { - // create the required interface elements - const searchText = document.createElement("h2"); - searchText.textContent = _("Searching"); - const searchSummary = document.createElement("p"); - searchSummary.classList.add("search-summary"); - searchSummary.innerText = ""; - const searchList = document.createElement("ul"); - searchList.classList.add("search"); - - const out = document.getElementById("search-results"); - Search.title = out.appendChild(searchText); - Search.dots = Search.title.appendChild(document.createElement("span")); - Search.status = out.appendChild(searchSummary); - Search.output = out.appendChild(searchList); - - const searchProgress = document.getElementById("search-progress"); - // Some themes don't use the search progress node - if (searchProgress) { - searchProgress.innerText = _("Preparing search..."); - } - Search.startPulse(); - - // index already loaded, the browser was quick! - if (Search.hasIndex()) Search.query(query); - else Search.deferQuery(query); - }, - - _parseQuery: (query) => { - // stem the search terms and add them to the correct list - const stemmer = new Stemmer(); - const searchTerms = new Set(); - const excludedTerms = new Set(); - const highlightTerms = new Set(); - const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); - splitQuery(query.trim()).forEach((queryTerm) => { - const queryTermLower = queryTerm.toLowerCase(); - - // maybe skip this "word" - // stopwords array is from language_data.js - if ( - stopwords.indexOf(queryTermLower) !== -1 || - queryTerm.match(/^\d+$/) - ) - return; - - // stem the word - let word = stemmer.stemWord(queryTermLower); - // select the correct list - if (word[0] === "-") excludedTerms.add(word.substr(1)); - else { - searchTerms.add(word); - highlightTerms.add(queryTermLower); - } - }); - - if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js - localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) - } - - // console.debug("SEARCH: searching for:"); - // console.info("required: ", [...searchTerms]); - // console.info("excluded: ", [...excludedTerms]); - - return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; - }, - - /** - * execute search (requires search index to be loaded) - */ - _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - const allTitles = Search._index.alltitles; - const indexEntries = Search._index.indexentries; - - // Collect multiple result groups to be sorted separately and then ordered. - // Each is an array of [docname, title, anchor, descr, score, filename]. - const normalResults = []; - const nonMainIndexResults = []; - - _removeChildren(document.getElementById("search-progress")); - - const queryLower = query.toLowerCase().trim(); - for (const [title, foundTitles] of Object.entries(allTitles)) { - if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { - for (const [file, id] of foundTitles) { - let score = Math.round(100 * queryLower.length / title.length) - normalResults.push([ - docNames[file], - titles[file] !== title ? `${titles[file]} > ${title}` : title, - id !== null ? "#" + id : "", - null, - score, - filenames[file], - ]); - } - } - } - - // search for explicit entries in index directives - for (const [entry, foundEntries] of Object.entries(indexEntries)) { - if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { - for (const [file, id, isMain] of foundEntries) { - const score = Math.round(100 * queryLower.length / entry.length); - const result = [ - docNames[file], - titles[file], - id ? "#" + id : "", - null, - score, - filenames[file], - ]; - if (isMain) { - normalResults.push(result); - } else { - nonMainIndexResults.push(result); - } - } - } - } - - // lookup as object - objectTerms.forEach((term) => - normalResults.push(...Search.performObjectSearch(term, objectTerms)) - ); - - // lookup as search terms in fulltext - normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); - - // let the scorer override scores with a custom scoring function - if (Scorer.score) { - normalResults.forEach((item) => (item[4] = Scorer.score(item))); - nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); - } - - // Sort each group of results by score and then alphabetically by name. - normalResults.sort(_orderResultsByScoreThenName); - nonMainIndexResults.sort(_orderResultsByScoreThenName); - - // Combine the result groups in (reverse) order. - // Non-main index entries are typically arbitrary cross-references, - // so display them after other results. - let results = [...nonMainIndexResults, ...normalResults]; - - // remove duplicate search results - // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept - let seen = new Set(); - results = results.reverse().reduce((acc, result) => { - let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); - if (!seen.has(resultStr)) { - acc.push(result); - seen.add(resultStr); - } - return acc; - }, []); - - return results.reverse(); - }, - - query: (query) => { - const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); - const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); - - // for debugging - //Search.lastresults = results.slice(); // a copy - // console.info("search results:", Search.lastresults); - - // print the results - _displayNextItem(results, results.length, searchTerms, highlightTerms); - }, - - /** - * search for object names - */ - performObjectSearch: (object, objectTerms) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const objects = Search._index.objects; - const objNames = Search._index.objnames; - const titles = Search._index.titles; - - const results = []; - - const objectSearchCallback = (prefix, match) => { - const name = match[4] - const fullname = (prefix ? prefix + "." : "") + name; - const fullnameLower = fullname.toLowerCase(); - if (fullnameLower.indexOf(object) < 0) return; - - let score = 0; - const parts = fullnameLower.split("."); - - // check for different match types: exact matches of full name or - // "last name" (i.e. last dotted part) - if (fullnameLower === object || parts.slice(-1)[0] === object) - score += Scorer.objNameMatch; - else if (parts.slice(-1)[0].indexOf(object) > -1) - score += Scorer.objPartialMatch; // matches in last name - - const objName = objNames[match[1]][2]; - const title = titles[match[0]]; - - // If more than one term searched for, we require other words to be - // found in the name/title/description - const otherTerms = new Set(objectTerms); - otherTerms.delete(object); - if (otherTerms.size > 0) { - const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); - if ( - [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) - ) - return; - } - - let anchor = match[3]; - if (anchor === "") anchor = fullname; - else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; - - const descr = objName + _(", in ") + title; - - // add custom score for some objects according to scorer - if (Scorer.objPrio.hasOwnProperty(match[2])) - score += Scorer.objPrio[match[2]]; - else score += Scorer.objPrioDefault; - - results.push([ - docNames[match[0]], - fullname, - "#" + anchor, - descr, - score, - filenames[match[0]], - ]); - }; - Object.keys(objects).forEach((prefix) => - objects[prefix].forEach((array) => - objectSearchCallback(prefix, array) - ) - ); - return results; - }, - - /** - * search for full-text terms in the index - */ - performTermsSearch: (searchTerms, excludedTerms) => { - // prepare search - const terms = Search._index.terms; - const titleTerms = Search._index.titleterms; - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - - const scoreMap = new Map(); - const fileMap = new Map(); - - // perform the search on the required terms - searchTerms.forEach((word) => { - const files = []; - const arr = [ - { files: terms[word], score: Scorer.term }, - { files: titleTerms[word], score: Scorer.title }, - ]; - // add support for partial matches - if (word.length > 2) { - const escapedWord = _escapeRegExp(word); - if (!terms.hasOwnProperty(word)) { - Object.keys(terms).forEach((term) => { - if (term.match(escapedWord)) - arr.push({ files: terms[term], score: Scorer.partialTerm }); - }); - } - if (!titleTerms.hasOwnProperty(word)) { - Object.keys(titleTerms).forEach((term) => { - if (term.match(escapedWord)) - arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); - }); - } - } - - // no match but word was a required one - if (arr.every((record) => record.files === undefined)) return; - - // found search word in contents - arr.forEach((record) => { - if (record.files === undefined) return; - - let recordFiles = record.files; - if (recordFiles.length === undefined) recordFiles = [recordFiles]; - files.push(...recordFiles); - - // set score for the word in each file - recordFiles.forEach((file) => { - if (!scoreMap.has(file)) scoreMap.set(file, {}); - scoreMap.get(file)[word] = record.score; - }); - }); - - // create the mapping - files.forEach((file) => { - if (!fileMap.has(file)) fileMap.set(file, [word]); - else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); - }); - }); - - // now check if the files don't contain excluded terms - const results = []; - for (const [file, wordList] of fileMap) { - // check if all requirements are matched - - // as search terms with length < 3 are discarded - const filteredTermCount = [...searchTerms].filter( - (term) => term.length > 2 - ).length; - if ( - wordList.length !== searchTerms.size && - wordList.length !== filteredTermCount - ) - continue; - - // ensure that none of the excluded terms is in the search result - if ( - [...excludedTerms].some( - (term) => - terms[term] === file || - titleTerms[term] === file || - (terms[term] || []).includes(file) || - (titleTerms[term] || []).includes(file) - ) - ) - break; - - // select one (max) score for the file. - const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); - // add result to the result list - results.push([ - docNames[file], - titles[file], - "", - null, - score, - filenames[file], - ]); - } - return results; - }, - - /** - * helper function to return a node containing the - * search summary for a given text. keywords is a list - * of stemmed words. - */ - makeSearchSummary: (htmlText, keywords, anchor) => { - const text = Search.htmlToText(htmlText, anchor); - if (text === "") return null; - - const textLower = text.toLowerCase(); - const actualStartPosition = [...keywords] - .map((k) => textLower.indexOf(k.toLowerCase())) - .filter((i) => i > -1) - .slice(-1)[0]; - const startWithContext = Math.max(actualStartPosition - 120, 0); - - const top = startWithContext === 0 ? "" : "..."; - const tail = startWithContext + 240 < text.length ? "..." : ""; - - let summary = document.createElement("p"); - summary.classList.add("context"); - summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; - - return summary; - }, -}; - -_ready(Search.init); diff --git a/html/_static/sphinx_highlight.js b/html/_static/sphinx_highlight.js deleted file mode 100644 index 8a96c69..0000000 --- a/html/_static/sphinx_highlight.js +++ /dev/null @@ -1,154 +0,0 @@ -/* Highlighting utilities for Sphinx HTML documentation. */ -"use strict"; - -const SPHINX_HIGHLIGHT_ENABLED = true - -/** - * highlight a given string on a node by wrapping it in - * span elements with the given class name. - */ -const _highlight = (node, addItems, text, className) => { - if (node.nodeType === Node.TEXT_NODE) { - const val = node.nodeValue; - const parent = node.parentNode; - const pos = val.toLowerCase().indexOf(text); - if ( - pos >= 0 && - !parent.classList.contains(className) && - !parent.classList.contains("nohighlight") - ) { - let span; - - const closestNode = parent.closest("body, svg, foreignObject"); - const isInSVG = closestNode && closestNode.matches("svg"); - if (isInSVG) { - span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); - } else { - span = document.createElement("span"); - span.classList.add(className); - } - - span.appendChild(document.createTextNode(val.substr(pos, text.length))); - const rest = document.createTextNode(val.substr(pos + text.length)); - parent.insertBefore( - span, - parent.insertBefore( - rest, - node.nextSibling - ) - ); - node.nodeValue = val.substr(0, pos); - /* There may be more occurrences of search term in this node. So call this - * function recursively on the remaining fragment. - */ - _highlight(rest, addItems, text, className); - - if (isInSVG) { - const rect = document.createElementNS( - "http://www.w3.org/2000/svg", - "rect" - ); - const bbox = parent.getBBox(); - rect.x.baseVal.value = bbox.x; - rect.y.baseVal.value = bbox.y; - rect.width.baseVal.value = bbox.width; - rect.height.baseVal.value = bbox.height; - rect.setAttribute("class", className); - addItems.push({ parent: parent, target: rect }); - } - } - } else if (node.matches && !node.matches("button, select, textarea")) { - node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); - } -}; -const _highlightText = (thisNode, text, className) => { - let addItems = []; - _highlight(thisNode, addItems, text, className); - addItems.forEach((obj) => - obj.parent.insertAdjacentElement("beforebegin", obj.target) - ); -}; - -/** - * Small JavaScript module for the documentation. - */ -const SphinxHighlight = { - - /** - * highlight the search words provided in localstorage in the text - */ - highlightSearchWords: () => { - if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight - - // get and clear terms from localstorage - const url = new URL(window.location); - const highlight = - localStorage.getItem("sphinx_highlight_terms") - || url.searchParams.get("highlight") - || ""; - localStorage.removeItem("sphinx_highlight_terms") - url.searchParams.delete("highlight"); - window.history.replaceState({}, "", url); - - // get individual terms from highlight string - const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); - if (terms.length === 0) return; // nothing to do - - // There should never be more than one element matching "div.body" - const divBody = document.querySelectorAll("div.body"); - const body = divBody.length ? divBody[0] : document.querySelector("body"); - window.setTimeout(() => { - terms.forEach((term) => _highlightText(body, term, "highlighted")); - }, 10); - - const searchBox = document.getElementById("searchbox"); - if (searchBox === null) return; - searchBox.appendChild( - document - .createRange() - .createContextualFragment( - '" - ) - ); - }, - - /** - * helper function to hide the search marks again - */ - hideSearchWords: () => { - document - .querySelectorAll("#searchbox .highlight-link") - .forEach((el) => el.remove()); - document - .querySelectorAll("span.highlighted") - .forEach((el) => el.classList.remove("highlighted")); - localStorage.removeItem("sphinx_highlight_terms") - }, - - initEscapeListener: () => { - // only install a listener if it is really needed - if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; - - document.addEventListener("keydown", (event) => { - // bail for input elements - if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; - // bail with special keys - if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; - if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { - SphinxHighlight.hideSearchWords(); - event.preventDefault(); - } - }); - }, -}; - -_ready(() => { - /* Do not call highlightSearchWords() when we are on the search page. - * It will highlight words from the *previous* search query. - */ - if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); - SphinxHighlight.initEscapeListener(); -}); diff --git a/html/genindex.html b/html/genindex.html deleted file mode 100644 index 505a10c..0000000 --- a/html/genindex.html +++ /dev/null @@ -1,188 +0,0 @@ - - - - - - - Index — vtacML documentation - - - - - - - - - - - - - - - - - -
-
- -
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/index.html b/html/index.html deleted file mode 100644 index 22f893d..0000000 --- a/html/index.html +++ /dev/null @@ -1,320 +0,0 @@ - - - - - - - - Welcome to vtacML’s homepage! — vtacML documentation - - - - - - - - - - - - - - - - - - -
-
-
- - -
- -
-

Welcome to vtacML’s homepage!

-
-

vtacML

-

vtacML is a Python package designed for the real-time analysis of data from the Visible Telescope (VT) of the SVOM satellite. This package uses machine learning models to analyze features from a list of observed VT sources and identify potential gamma-ray burst (GRB) optical afterglow candidates. vtacML is integrated into the real-time SVOM VT VHF pipeline and flags each source detected, indicating the probability that it is a GRB candidate. This information is then used by Burst Advocates (BAs) on shift to help them identify which source is the real GRB counterpart.

-
-

Table of Contents

- -
-
-

Overview

-

The SVOM mission, a collaboration between the China National Space Administration (CNSA) and the French space agency CNES, aims to study gamma-ray bursts (GRBs), the most energetic explosions in the universe. The Visible Telescope (VT) on SVOM plays a critical role in observing these events in the optical wavelength range.

-

vtacML leverages machine learning to analyze VT data, providing a probability score for each observation to indicate its likelihood of being a GRB candidate. The package includes tools for data preprocessing, model training, evaluation, and visualization.

-
-
-

Installation

-

To install vtacML, you can use pip:

-
pip install vtacML
-
-
-

Alternatively, you can clone the repository and install the package locally:

-
git clone https://github.com/jerbeario/VTAC_ML.git
-cd vtacML
-pip install .
-
-
-
-
-

Usage

-
-

Quick Start

-

Here’s a quick example to get you started with vtacML:

-
from vtacML.pipeline import VTACMLPipe
-
-# Initialize the pipeline
-pipeline = VTACMLPipe()
-
-# Load configuration
-pipeline.load_config('path/to/config.yaml')
-
-# Train the model
-pipeline.train()
-
-# Evaluate the model
-pipeline.evaluate('evaluation_name', plot=True)
-
-# Predict GRB candidates
-predictions = pipeline.predict(observation_dataframe, prob=True)
-print(predictions)
-
-
-
-
-

Grid Search and Model Training

-

vtacML can perform grid search on a large array of models and parameters specified in the configuration file. Initialize the VTACMLPipe class with a specified config file (or use the default) and train it. Then, you can save the best model for future use.

-
from vtacML.pipeline import VTACMLPipe
-
-# Initialize the pipeline with a configuration file
-pipeline = VTACMLPipe(config_file='path/to/config.yaml')
-
-# Train the model with grid search
-pipeline.train()
-
-# Save the best model
-pipeline.save_best_model('path/to/save/best_model.pkl')
-
-
-
-
-

Loading and Using the Best Model

-

After training and saving the best model, you can create a new instance of the VTACMLPipe class and load the best model for further use.

-
from vtacML.pipeline import VTACMLPipe
-
-# Initialize a new pipeline instance
-pipeline = VTACMLPipe()
-
-# Load the best model
-pipeline.load_best_model('path/to/save/best_model.pkl')
-
-# Predict GRB candidates
-predictions = pipeline.predict(observation_dataframe, prob=True)
-print(predictions)
-
-
-
-
-

Using Pre-trained Model for Immediate Prediction

-

If you already have a trained model, you can use the quick wrapper function predict_from_best_pipeline to predict data immediately. A pre-trained model is available by default.

-
from vtacML.pipeline import predict_from_best_pipeline
-
-# Predict GRB candidates using the pre-trained model
-predictions = predict_from_best_pipeline(observation_dataframe, model_path='path/to/pretrained_model.pkl')
-print(predictions)
-
-
-
-
-

Config File

-

The config file is used to configure the model searching process.

-
# Default config file, used to search for best model using only first two sequences (X0, X1) from the VT pipeline
-Inputs:
-  file: 'combined_qpo_vt_all_cases_with_GRB_with_flags.parquet' # Data file used for training. Located in /data/
-#  path: 'combined_qpo_vt_with_GRB.parquet'
-#  path: 'combined_qpo_vt_faint_case_with_GRB_with_flags.parquet'
-  columns: [
-    "MAGCAL_R0",
-    "MAGCAL_B0",
-    "MAGERR_R0",
-    "MAGERR_B0",
-    "MAGCAL_R1",
-    "MAGCAL_B1",
-    "MAGERR_R1",
-    "MAGERR_B1",
-    "MAGVAR_R1",
-    "MAGVAR_B1",
-    'EFLAG_R0',
-    'EFLAG_R1',
-    'EFLAG_B0',
-    'EFLAG_B1',
-    "NEW_SRC",
-    "DMAG_CAT"
-    ] # features used for training
-  target_column: 'IS_GRB' # feature column that holds the class information to be predicted
-
-# Set of models and parameters to perform GridSearchCV over
-Models:
-  rfc:
-    class: RandomForestClassifier()
-    param_grid:
-      'rfc__n_estimators': [100, 200, 300]  # Number of trees in the forest
-      'rfc__max_depth': [4, 6, 8]  # Maximum depth of the tree
-      'rfc__min_samples_split': [2, 5, 10]  # Minimum number of samples required to split an internal node
-      'rfc__min_samples_leaf': [1, 2, 4]  # Minimum number of samples required to be at a leaf node
-      'rfc__bootstrap': [True, False]  # Whether bootstrap samples are used when building trees
-  ada:
-    class: AdaBoostClassifier()
-    param_grid:
-      'ada__n_estimators': [50, 100, 200]  # Number of weak learners
-      'ada__learning_rate': [0.01, 0.1, 1]  # Learning rate
-      'ada__algorithm': ['SAMME']  # Algorithm for boosting
-  svc:
-    class: SVC()
-    param_grid:
-      'svc__C': [0.1, 1, 10, 100]  # Regularization parameter
-      'svc__kernel': ['poly', 'rbf', 'sigmoid']  # Kernel type to be used in the algorithm
-      'svc__gamma': ['scale', 'auto']  # Kernel coefficient
-      'svc__degree': [3, 4, 5]  # Degree of the polynomial kernel function (if `kernel` is 'poly')
-  knn:
-    class: KNeighborsClassifier()
-    param_grid:
-      'knn__n_neighbors': [3, 5, 7, 9]  # Number of neighbors to use
-      'knn__weights': ['uniform', 'distance']  # Weight function used in prediction
-      'knn__algorithm': ['ball_tree', 'kd_tree', 'brute']  # Algorithm used to compute the nearest neighbors
-      'knn__p': [1, 2]  # Power parameter for the Minkowski metric
-  lr:
-    class: LogisticRegression()
-    param_grid:
-      'lr__penalty': ['l1', 'l2', 'elasticnet']  # Specify the norm of the penalty
-      'lr__C': [0.01, 0.1, 1, 10]  # Inverse of regularization strength
-      'lr__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']  # Algorithm to use in the optimization problem
-      'lr__max_iter': [100, 200, 300]  # Maximum number of iterations taken for the solvers to converge
-  dt:
-    class: DecisionTreeClassifier()
-    param_grid:
-      'dt__criterion': ['gini', 'entropy']  # The function to measure the quality of a split
-      'dt__splitter': ['best', 'random']  # The strategy used to choose the split at each node
-      'dt__max_depth': [4, 6, 8, 10]  # Maximum depth of the tree
-      'dt__min_samples_split': [2, 5, 10]  # Minimum number of samples required to split an internal node
-      'dt__min_samples_leaf': [1, 2, 4]  # Minimum number of samples required to be at a leaf node
-
-# Output directories
-Outputs:
-  model_path: '/output/models'
-  viz_path: '/output/visualizations/'
-  plot_correlation:
-    flag: True
-    path: 'output/corr_plots/'
-
-
-
-
-
-
-

Documentation

-
-
-
-

Contents:

- -
-
-
-

Indices and tables

- -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/modules.html b/html/modules.html deleted file mode 100644 index 6ee7cb1..0000000 --- a/html/modules.html +++ /dev/null @@ -1,241 +0,0 @@ - - - - - - - - Docs vtacML — vtacML documentation - - - - - - - - - - - - - - - - - - -
-
-
- - -
- -
-

Docs vtacML

-
-

Pipeline

-
-
-class vtacML.pipeline.VTACMLPipe(config_file='config/config.yaml')[source]
-

Bases: object

-

A machine learning pipeline for training and evaluating an optimal model for optical identification of GRBs for the SVOM mission.

-
-
Parameters:
-

config_path (str, optional) – Path to the configuration file. Default ‘config/config.yaml’

-
-
-
-
-evaluate(name, plot=False, score=<function f1_score>)[source]
-

Evaluate the best model with various metrics and visualization.

-
-
Parameters:
-
    -
  • name (str) – The name for the evaluation output.

  • -
  • plot (bool, optional) – If True, generates and saves evaluation plots, by default False.

  • -
  • score (callable, optional) – The scoring function to use for evaluation, by default f1_score.

  • -
-
-
-
- -
-
-load_best_model(model_name)[source]
-

Loads ‘model_name’ into current pipeline.

-
-
Parameters:
-

model_name (str) – The name of the model from the Outputs/models/ directory to be loaded.

-
-
-
- -
-
-load_config(config_file)[source]
-

Load the configuration file and prepare the data.

-
-
Parameters:
-

config_file (str) – The path to the configuration file.

-
-
-
- -
-
-predict(X, prob=False)[source]
-

Predict using the best model.

-
-
Parameters:
-
    -
  • X (DataFrame) – The input features for prediction.

  • -
  • prob (bool, optional) – If True, returns the probability of the predictions, by default False.

  • -
-
-
Returns:
-

The predicted values or probabilities.

-
-
Return type:
-

ndarray

-
-
-
- -
-
-save_best_model(model_name='best_model', model_path=None)[source]
-

Saves best model from training to the specified path in the config file. Optionally change name and/or path -of the model.

-
-
Parameters:
-
    -
  • model_name (str, optional) – Name of the model to be saved. Default=’best_model’.

  • -
  • model_path (str, optional) – Path to the model to be saved. Default=’model_path’ in config file

  • -
-
-
-
- -
-
-train(save_all_model=False, resample_flag=False, scoring='f1', cv=5)[source]
-

Train the pipeline with the given data.

-
-
Parameters:
-
    -
  • save_all_model (bool, optional) – Whether to save best model of each model type to output directory. Default is False.

  • -
  • resample_flag (bool, optional) – Whether to resample the data. Default is False

  • -
  • scoring (str, optional) – The scoring function to use. Default is ‘f1’.

  • -
  • cv (int, optional) – The cross-validation split to use. Default is 5.

  • -
-
-
Returns:
-

Trained machine learning pipeline.

-
-
Return type:
-

Pipeline

-
-
-
- -
- -
-
-vtacML.pipeline.predict_from_best_pipeline(X: DataFrame, prob_flag=False, model_name='0.974_rfc_best_model.pkl', config_path=None)[source]
-

Predict using the best model pipeline.

-
-
Parameters:
-
    -
  • X (array-like) – Features to predict.

  • -
  • prob_flag (bool, optional) – Whether to return probabilities, by default False.

  • -
  • model_name (str, optional) – Name of the model to use, by default ‘0.974_rfc_best_model.pkl’

  • -
  • model_path (str, optional) – Path to the model to use for prediction, by default ‘None’

  • -
  • config_path (str, optional) – Path to the configuration file, by default ‘../config/config.yaml’.

  • -
-
-
Returns:
-

Predicted values or probabilities.

-
-
Return type:
-

ndarray

-
-
-
- -
-
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/objects.inv b/html/objects.inv deleted file mode 100644 index ed90b90..0000000 --- a/html/objects.inv +++ /dev/null @@ -1,5 +0,0 @@ -# Sphinx inventory version 2 -# Project: vtacML -# Version: -# The remainder of this file is compressed using zlib. -xڭJ0y^&zPPXɴ Ihbo瓘:]LaQv63b;P+]g6@kjظfۻb_vƅvM8r=@Z+Ж>TB7aM5\Rp1qseΣUێ"ʚSJ e$r!ζp~\5iżlC(ۻ6oE.nʎ$S&%j꘦{+_,)Y;yh ͈y2^}S8 \ No newline at end of file diff --git a/html/py-modindex.html b/html/py-modindex.html deleted file mode 100644 index db67ed4..0000000 --- a/html/py-modindex.html +++ /dev/null @@ -1,123 +0,0 @@ - - - - - - - Python Module Index — vtacML documentation - - - - - - - - - - - - - - - - - - - - -
-
-
- - -
- - -

Python Module Index

- -
- v -
- - - - - - - - - - -
 
- v
- vtacML -
    - vtacML.pipeline -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/search.html b/html/search.html deleted file mode 100644 index 5bce26c..0000000 --- a/html/search.html +++ /dev/null @@ -1,120 +0,0 @@ - - - - - - - Search — vtacML documentation - - - - - - - - - - - - - - - - - - - - - - - - -
-
-
- - -
- -

Search

- - - - -

- Searching for multiple words only shows matches that contain - all words. -

- - -
- - - -
- - -
- - -
- -
-
- -
-
- - - - - - - \ No newline at end of file diff --git a/html/searchindex.js b/html/searchindex.js deleted file mode 100644 index 3c633e8..0000000 --- a/html/searchindex.js +++ /dev/null @@ -1 +0,0 @@ -Search.setIndex({"alltitles": {"Config File": [[0, "config-file"]], "Contents:": [[0, null]], "Docs vtacML": [[1, "docs-vtacml"]], "Documentation": [[0, "documentation"]], "Grid Search and Model Training": [[0, "grid-search-and-model-training"]], "Indices and tables": [[0, "indices-and-tables"]], "Installation": [[0, "installation"]], "Loading and Using the Best Model": [[0, "loading-and-using-the-best-model"]], "Overview": [[0, "overview"]], "Pipeline": [[1, "module-vtacML.pipeline"]], "Quick Start": [[0, "quick-start"]], "Table of Contents": [[0, "table-of-contents"]], "Usage": [[0, "usage"]], "Using Pre-trained Model for Immediate Prediction": [[0, "using-pre-trained-model-for-immediate-prediction"]], "Welcome to vtacML\u2019s homepage!": [[0, "welcome-to-vtacml-s-homepage"]], "vtacML": [[0, "vtacml"]]}, "docnames": ["index", "modules"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.rst", "modules.rst"], "indexentries": {"evaluate() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.evaluate", false]], "load_best_model() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.load_best_model", false]], "load_config() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.load_config", false]], "module": [[1, "module-vtacML.pipeline", false]], "predict() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.predict", false]], "predict_from_best_pipeline() (in module vtacml.pipeline)": [[1, "vtacML.pipeline.predict_from_best_pipeline", false]], "save_best_model() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.save_best_model", false]], "train() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.train", false]], "vtacml.pipeline": [[1, "module-vtacML.pipeline", false]], "vtacmlpipe (class in vtacml.pipeline)": [[1, "vtacML.pipeline.VTACMLPipe", false]]}, "objects": {"vtacML": [[1, 0, 0, "-", "pipeline"]], "vtacML.pipeline": [[1, 1, 1, "", "VTACMLPipe"], [1, 3, 1, "", "predict_from_best_pipeline"]], "vtacML.pipeline.VTACMLPipe": [[1, 2, 1, "", "evaluate"], [1, 2, 1, "", "load_best_model"], [1, 2, 1, "", "load_config"], [1, 2, 1, "", "predict"], [1, 2, 1, "", "save_best_model"], [1, 2, 1, "", "train"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"0": [0, 1], "01": 0, "1": 0, "10": 0, "100": 0, "2": 0, "200": 0, "3": 0, "300": 0, "4": 0, "5": [0, 1], "50": 0, "6": 0, "7": 0, "8": 0, "9": 0, "974_rfc_best_model": 1, "A": [0, 1], "If": [0, 1], "The": [0, 1], "Then": 0, "To": 0, "ada": 0, "ada__algorithm": 0, "ada__learning_r": 0, "ada__n_estim": 0, "adaboostclassifi": 0, "administr": 0, "advoc": 0, "after": 0, "afterglow": 0, "agenc": 0, "aim": 0, "algorithm": 0, "alreadi": 0, "altern": 0, "an": [0, 1], "analysi": 0, "analyz": 0, "ar": 0, "arrai": [0, 1], "auto": 0, "avail": 0, "ba": 0, "ball_tre": 0, "base": 1, "being": 0, "best": 1, "best_model": [0, 1], "between": 0, "bool": 1, "boost": 0, "bootstrap": 0, "brute": 0, "build": 0, "burst": 0, "callabl": 1, "can": 0, "candid": 0, "cd": 0, "cg": 0, "chang": 1, "china": 0, "choos": 0, "class": [0, 1], "clone": 0, "cne": 0, "cnsa": 0, "coeffici": 0, "collabor": 0, "column": 0, "com": 0, "combined_qpo_vt_all_cases_with_grb_with_flag": 0, "combined_qpo_vt_faint_case_with_grb_with_flag": 0, "combined_qpo_vt_with_grb": 0, "comput": 0, "config": 1, "config_fil": [0, 1], "config_path": 1, "configur": [0, 1], "converg": 0, "corr_plot": 0, "counterpart": 0, "creat": 0, "critic": 0, "cross": 1, "current": 1, "cv": 1, "data": [0, 1], "datafram": 1, "decisiontreeclassifi": 0, "default": [0, 1], "degre": 0, "depth": 0, "design": 0, "detect": 0, "directori": [0, 1], "distanc": 0, "dmag_cat": 0, "doc": 0, "dt": 0, "dt__criterion": 0, "dt__max_depth": 0, "dt__min_samples_leaf": 0, "dt__min_samples_split": 0, "dt__splitter": 0, "each": [0, 1], "eflag_b0": 0, "eflag_b1": 0, "eflag_r0": 0, "eflag_r1": 0, "elasticnet": 0, "energet": 0, "entropi": 0, "evalu": [0, 1], "evaluation_nam": 0, "event": 0, "exampl": 0, "explos": 0, "f1": 1, "f1_score": 1, "fals": [0, 1], "featur": [0, 1], "file": 1, "first": 0, "flag": 0, "forest": 0, "french": 0, "from": [0, 1], "function": [0, 1], "further": 0, "futur": 0, "gamma": 0, "gener": 1, "get": 0, "gini": 0, "git": 0, "github": 0, "given": 1, "grb": [0, 1], "gridsearchcv": 0, "have": 0, "help": 0, "here": 0, "hold": 0, "http": 0, "i": [0, 1], "identif": 1, "identifi": 0, "import": 0, "includ": 0, "index": 0, "inform": 0, "initi": 0, "input": [0, 1], "instanc": 0, "int": 1, "integr": 0, "intern": 0, "invers": 0, "is_grb": 0, "iter": 0, "its": 0, "jerbeario": 0, "kd_tree": 0, "kernel": 0, "kneighborsclassifi": 0, "knn": 0, "knn__algorithm": 0, "knn__n_neighbor": 0, "knn__p": 0, "knn__weight": 0, "l1": 0, "l2": 0, "larg": 0, "lbfg": 0, "leaf": 0, "learn": [0, 1], "learner": 0, "leverag": 0, "liblinear": 0, "like": 1, "likelihood": 0, "list": 0, "load": 1, "load_best_model": [0, 1], "load_config": [0, 1], "local": 0, "locat": 0, "logisticregress": 0, "lr": 0, "lr__c": 0, "lr__max_it": 0, "lr__penalti": 0, "lr__solver": 0, "machin": [0, 1], "magcal_b0": 0, "magcal_b1": 0, "magcal_r0": 0, "magcal_r1": 0, "magerr_b0": 0, "magerr_b1": 0, "magerr_r0": 0, "magerr_r1": 0, "magvar_b1": 0, "magvar_r1": 0, "maximum": 0, "measur": 0, "metric": [0, 1], "minimum": 0, "minkowski": 0, "mission": [0, 1], "model": 1, "model_nam": 1, "model_path": [0, 1], "modul": 0, "most": 0, "name": 1, "nation": 0, "ndarrai": 1, "nearest": 0, "neighbor": 0, "new": 0, "new_src": 0, "newton": 0, "node": 0, "none": 1, "norm": 0, "number": 0, "object": 1, "observ": 0, "observation_datafram": 0, "onli": 0, "optic": [0, 1], "optim": [0, 1], "option": 1, "output": [0, 1], "over": 0, "packag": 0, "page": 0, "param_grid": 0, "paramet": [0, 1], "parquet": 0, "path": [0, 1], "penalti": 0, "perform": 0, "pip": 0, "pipelin": 0, "pkl": [0, 1], "plai": 0, "plot": [0, 1], "plot_correl": 0, "poli": 0, "polynomi": 0, "potenti": 0, "power": 0, "predict": 1, "predict_from_best_pipelin": [0, 1], "prepar": 1, "preprocess": 0, "pretrained_model": 0, "print": 0, "prob": [0, 1], "prob_flag": 1, "probabl": [0, 1], "problem": 0, "process": 0, "provid": 0, "python": 0, "qualiti": 0, "rai": 0, "random": 0, "randomforestclassifi": 0, "rang": 0, "rate": 0, "rbf": 0, "real": 0, "regular": 0, "repositori": 0, "requir": 0, "resampl": 1, "resample_flag": 1, "return": 1, "rfc": 0, "rfc__bootstrap": 0, "rfc__max_depth": 0, "rfc__min_samples_leaf": 0, "rfc__min_samples_split": 0, "rfc__n_estim": 0, "role": 0, "sag": 0, "saga": 0, "samm": 0, "sampl": 0, "satellit": 0, "save": [0, 1], "save_all_model": 1, "save_best_model": [0, 1], "scale": 0, "score": [0, 1], "sequenc": 0, "set": 0, "shift": 0, "sigmoid": 0, "solver": 0, "sourc": [0, 1], "space": 0, "specifi": [0, 1], "split": [0, 1], "str": 1, "strategi": 0, "strength": 0, "studi": 0, "svc": 0, "svc__c": 0, "svc__degre": 0, "svc__gamma": 0, "svc__kernel": 0, "svom": [0, 1], "taken": 0, "target_column": 0, "telescop": 0, "them": 0, "thi": 0, "time": 0, "tool": 0, "train": 1, "tree": 0, "true": [0, 1], "two": 0, "type": [0, 1], "uniform": 0, "univers": 0, "us": 1, "valid": 1, "valu": 1, "variou": 1, "vhf": 0, "visibl": 0, "visual": [0, 1], "viz_path": 0, "vt": 0, "vtac_ml": 0, "vtacmlpip": [0, 1], "wavelength": 0, "weak": 0, "weight": 0, "when": 0, "whether": [0, 1], "which": 0, "wrapper": 0, "x": 1, "x0": 0, "x1": 0, "yaml": [0, 1], "you": 0}, "titles": ["Welcome to vtacML\u2019s homepage!", "Docs vtacML"], "titleterms": {"": 0, "best": 0, "config": 0, "content": 0, "doc": 1, "document": 0, "file": 0, "grid": 0, "homepag": 0, "immedi": 0, "indic": 0, "instal": 0, "load": 0, "model": 0, "overview": 0, "pipelin": 1, "pre": 0, "predict": 0, "quick": 0, "search": 0, "start": 0, "tabl": 0, "train": 0, "us": 0, "usag": 0, "vtacml": [0, 1], "welcom": 0}}) \ No newline at end of file