diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle index f685706..d3537f2 100644 Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ diff --git a/docs/build/doctrees/index.doctree b/docs/build/doctrees/index.doctree index 212ccc4..0ce437a 100644 Binary files a/docs/build/doctrees/index.doctree and b/docs/build/doctrees/index.doctree differ diff --git a/docs/build/html/.buildinfo b/docs/build/html/.buildinfo new file mode 100644 index 0000000..4d38845 --- /dev/null +++ b/docs/build/html/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 15909ba89e1fcdfb649a555995912958 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/build/html/_modules/index.html b/docs/build/html/_modules/index.html new file mode 100644 index 0000000..9da7a2e --- /dev/null +++ b/docs/build/html/_modules/index.html @@ -0,0 +1,99 @@ + + + + + + + Overview: module code — vtacML documentation + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +

All modules for which code is available

+ + +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/_modules/vtacML/pipeline.html b/docs/build/html/_modules/vtacML/pipeline.html new file mode 100644 index 0000000..ed41c7b --- /dev/null +++ b/docs/build/html/_modules/vtacML/pipeline.html @@ -0,0 +1,747 @@ + + + + + + + vtacML.pipeline — vtacML documentation + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +

Source code for vtacML.pipeline

+import logging
+import os
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import yaml
+import joblib
+
+
+from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.linear_model import LogisticRegression
+from sklearn.tree import DecisionTreeClassifier
+from sklearn.svm import SVC
+from sklearn.metrics import mean_absolute_error, mean_squared_error, f1_score, confusion_matrix
+from sklearn.model_selection import train_test_split, GridSearchCV
+from sklearn.pipeline import Pipeline
+from sklearn.preprocessing import StandardScaler, Normalizer
+
+from imblearn.over_sampling import SMOTE
+
+from yellowbrick import ROCAUC
+from yellowbrick.model_selection import FeatureImportances, ValidationCurve
+from yellowbrick.classifier import ClassificationReport, ConfusionMatrix, PrecisionRecallCurve, ClassPredictionError
+from yellowbrick.model_selection import RFECV
+
+from .preparation import Cleaner
+from .utils import get_path
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +def predict_from_best_pipeline(X: pd.DataFrame, prob_flag=False, model_name='0.974_rfc_best_model.pkl', + config_path=None): + """ + Predict using the best model pipeline. + + Parameters + ---------- + X : array-like + Features to predict. + prob_flag : bool, optional + Whether to return probabilities, by default False. + model_name : str, optional + Name of the model to use, by default '0.974_rfc_best_model.pkl' + model_path : str, optional + Path to the model to use for prediction, by default 'None' + config_path : str, optional + Path to the configuration file, by default '../config/config.yaml'. + + Returns + ------- + ndarray + Predicted values or probabilities. + """ + + vtac_ml_pipe = VTACMLPipe(config_file=config_path) + print(model_name) + vtac_ml_pipe.load_best_model(model_name=model_name) + print(vtac_ml_pipe.best_model) + y = vtac_ml_pipe.predict(X, prob=prob_flag) + return y
+ + + +
+[docs] +class VTACMLPipe: + """ + A machine learning pipeline for training and evaluating an optimal model for optical identification of GRBs for the SVOM mission. + + Parameters + ---------- + config_path : str, optional + Path to the configuration file. Default 'config/config.yaml' + + """ + + def __init__(self, config_file='config/config.yaml'): + + """ + Initialize the VTACMLPipe. + + Parameters + ---------- + config_path : str + Path to the configuration file. + """ + + # initialize attributes + self.config = None + self.X = None + self.y = None + self.X_columns = None + self.y_columns = None + self.X_train = None + self.y_train = None + self.X_test = None + self.y_test = None + self.preprocessing = Pipeline(steps=[], verbose=True) + self.full_pipeline = Pipeline(steps=[], verbose=True) + self.models = {} + self.best_model = None + self.y_predict = None + self.y_predict_prob = None + + # Load configs from config file + self.load_config(config_file) + + # Defining Steps of the preprocessing pipeline + cleaner = Cleaner(variables=self.X_columns) + scaler = StandardScaler() + normalizer = Normalizer() + self.steps = [ + ('cleaner', cleaner), + # ('ohe', ohe), + ('scaler', scaler), + ('normalizer', normalizer) + ] + self._create_pipe(self.steps) + +
+[docs] + def load_config(self, config_file): + """ + Load the configuration file and prepare the data. + + Parameters + ---------- + config_file : str + The path to the configuration file. + + """ + config_path = get_path(config_file) + + with open(config_path, 'r') as file: + self.config = yaml.safe_load(file) + + # loading config file and prepping data + data_file = self.config['Inputs']['file'] + data = self._get_data(data_file=data_file) + + self.X_columns = self.config['Inputs']['columns'] + self.X = data[self.X_columns] + self.y_columns = self.config['Inputs']['target_column'] + self.y = data[self.y_columns] + self._load_data(data, columns=self.X_columns, target=self.y_columns, test_size=0.2) + + # building models attribute + for model in self.config['Models']: + if model == 'rfc': + self.models[model] = RandomForestClassifier() + if model == 'svc': + self.models[model] = SVC() + if model == 'knn': + self.models[model] = KNeighborsClassifier() + if model == 'lr': + self.models[model] = LogisticRegression() + if model == 'dt': + self.models[model] = DecisionTreeClassifier() + if model == 'ada': + self.models[model] = AdaBoostClassifier()
+ + +
+[docs] + def train(self, save_all_model=False, resample_flag=False, scoring='f1', cv=5): + """ + Train the pipeline with the given data. + + Parameters + ---------- + save_all_model : bool, optional + Whether to save best model of each model type to output directory. Default is False. + resample_flag : bool, optional + Whether to resample the data. Default is False + scoring : str, optional + The scoring function to use. Default is 'f1'. + cv : int, optional + The cross-validation split to use. Default is 5. + + Returns + ------- + Pipeline + Trained machine learning pipeline. + """ + + models = self.models + + if resample_flag: + self.X_train, self.y_train = self._resample(self.X_train, self.y_train) + + if self.preprocessing.steps is None: + print("No preprocessing steps") + model_path = None + best_score = 0 + for name, model in models.items(): + + param_grid = self.config['Models'][name]['param_grid'] + + log.info("Model: {}".format(name)) + + self.full_pipeline = Pipeline(steps=self.preprocessing.steps.copy(), verbose=True) + self.full_pipeline.steps.append((name, model)) + log.info(self.full_pipeline.steps) + + # model fitting + grid_search = GridSearchCV(self.full_pipeline, param_grid, scoring=scoring, verbose=2, cv=cv) + grid_search.fit(self.X_train, self.y_train) + + model_filename = f'{round(grid_search.best_score_, 3)}_{name}_best_model.pkl' + model_path = get_path(f'output/models/{model_filename}') + if save_all_model: + joblib.dump( + grid_search.best_estimator_, + model_path) + + if grid_search.best_score_ > best_score: + best_score = grid_search.best_score_ + self.best_model = grid_search.best_estimator_ + + log.info('*' * 50) + log.info(f'Best {name} Pipeline:') + log.info(grid_search.best_estimator_) + log.info(f'Best Score: {grid_search.best_score_}') + log.info('*' * 50) + log.info(f'Overall best model: {self.best_model}')
+ + + # self.save_best_model(model_path=model_path) + +
+[docs] + def save_best_model(self, model_name='best_model', model_path=None): + """ + Saves best model from training to the specified path in the config file. Optionally change name and/or path + of the model. + + Parameters + ------- + model_name : str, optional + Name of the model to be saved. Default='best_model'. + model_path : str, optional + Path to the model to be saved. Default='model_path' in config file + + + """ + if model_path is None: + model_path = get_path(f'{self.config['Outputs']['model_path']}/{model_name}') + else: + print(model_path) + model_path = get_path(model_path) + print(model_path) + + joblib.dump(self.best_model, model_path) + logging.info(f'Saved model to {model_path}')
+ + +
+[docs] + def load_best_model(self, model_name): + """ + Loads 'model_name' into current pipeline. + + Parameters + ------- + model_name : str + The name of the model from the Outputs/models/ directory to be loaded. + + + """ + model_path = get_path(f'{self.config['Outputs']['model_path']}/{model_name}') + self.best_model = joblib.load(model_path) + logging.info(f'Loaded {model_path}')
+ + +
+[docs] + def evaluate(self, name, plot=False, score=f1_score): + """ + Evaluate the best model with various metrics and visualization. + + Parameters + ---------- + name : str + The name for the evaluation output. + plot : bool, optional + If True, generates and saves evaluation plots, by default False. + score : callable, optional + The scoring function to use for evaluation, by default f1_score. + + """ + viz_path = self.config['Outputs']['viz_path'] + output_path = get_path(f'{viz_path}/{name}') + + print(self.best_model.steps) + if not os.path.exists(output_path): + os.makedirs(output_path) + print(f"Folder '{output_path}' created.") + else: + print(f"Folder '{output_path}' already exists.") + # INCLUDE case in titles + # model scoring + # + # if self.best_model.steps[-1][0] == 'knn' and plot: + # print('plotting') + # self.preprocessing.fit(self.X) + # X = pd.DataFrame(self.preprocessing.transform(self.X)) + # self.plot_knn_neighbors(knn=self.best_model.steps[-1][1], X=X, y=self.y, features=self.X_columns) + # print('done plotting') + # else: + print(self.best_model.steps[-1][1]) + + # Evaluate model performance + self._print_model_eval() + + if plot: + + _, ax_report = plt.subplots() + + report_viz = ClassificationReport(self.best_model, classes=["NOT_GRB", "IS_GRB"], support=True, + ax=ax_report) + report_viz.fit(self.X_train, self.y_train) # Fit the visualizer and the model + report_viz.score(self.X_test, self.y_test) # Evaluate the model on the test data + report_viz.show(outpath=output_path + '/classification_report.pdf') + + _, ax_cm_test = plt.subplots() + + cm_test_viz = ConfusionMatrix(self.best_model, classes=["NOT_GRB", "IS_GRB"], percent=True, axes=ax_cm_test) + cm_test_viz.fit(self.X_train, self.y_train) + cm_test_viz.score(self.X_test, self.y_test) + cm_test_viz.show(outpath=output_path + '/confusion_matrix_test.pdf') + + _, ax_cm_train = plt.subplots() + + cm_train_viz = ConfusionMatrix(self.best_model, classes=["NOT_GRB", "IS_GRB"], percent=True, ax=ax_cm_train) + cm_train_viz.fit(self.X_train, self.y_train) + cm_train_viz.score(self.X_train, self.y_train) + cm_train_viz.show(outpath=output_path + '/confusion_matrix_train.pdf') + + _, ax_roc = plt.subplots() + + roc_viz = ROCAUC(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_roc) + roc_viz.fit(self.X_train, self.y_train) # Fit the training data to the visualizer + roc_viz.score(self.X_test, self.y_test) # Evaluate the model on the test data + roc_viz.show(outpath=output_path + '/ROC_AUC.pdf') + + _, ax_pr_curve = plt.subplots() + + pr_curve_viz = PrecisionRecallCurve(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_pr_curve) + pr_curve_viz.fit(self.X_train, self.y_train) + pr_curve_viz.score(self.X_test, self.y_test) + pr_curve_viz.show(outpath=output_path + '/PR_curve.pdf') + + _, ax_class_pred = plt.subplots() + ax_class_pred.semilogy() + + class_pred_viz = ClassPredictionError(self.best_model, classes=["NOT_GRB", "IS_GRB"], ax=ax_class_pred) + class_pred_viz.fit(self.X_train, self.y_train) + class_pred_viz.score(self.X_test, self.y_test) + class_pred_viz.show(outpath=output_path + '/class_predictions.pdf') + # + if self.best_model.steps[-1][1] == RandomForestClassifier(): + _, ax_feature_imp = plt.subplots() + + feature_imp_viz = FeatureImportances(self.best_model.steps[-1][1], ax=ax_feature_imp) + feature_imp_viz.fit(self.X, self.y) + feature_imp_viz.show(outpath=output_path + '/feature_importances.pdf')
+ + # if plot_extra: + # self.hyperparameter_valid_curve(outpath=output_path) + # # self.recursive_feature_elimination_plot(outpath=output_path) + # + +
+[docs] + def predict(self, X, prob=False): + """ + Predict using the best model. + + Parameters + ---------- + X : DataFrame + The input features for prediction. + prob : bool, optional + If True, returns the probability of the predictions, by default False. + + Returns + ------- + ndarray + The predicted values or probabilities. + """ + X = X[self.X_columns] + if prob is True: + self.y_predict_prob = self.best_model.predict_proba(X) + return self.y_predict_prob + else: + self.y_predict = self.best_model.predict(X) + return self.y_predict
+ + + @staticmethod + def _get_data(data_file: str): + """ + Load data from a parquet file. + + Parameters + ---------- + data_file : str + The name of the data file to load. + + Returns + ------- + DataFrame + The loaded data. + """ + data_path = get_path(f'/data/{data_file}') + print(data_path) + data = pd.read_parquet(data_path, engine='fastparquet') + return data + + def _load_data(self, data: pd.DataFrame, columns: list, target: str, test_size: float = 0.2): + """ + Load the data from the source specified in the config. + + Parameters + ---------- + data : pd.DataFrame + The data to load. + columns : list + The columns to load. + target: str + The target column. + test_size: float, optional + The size of the test sample as a fraction of the total sample. Default is 0.2. + + Returns + ------- + DataFrame + Loaded data. + """ + X = data[columns] + y = data[target] + self._split_data(X, y, test_size) + + def _split_data(self, X, y, test_size): + """ + Split data into training and testing sets. + + Parameters + ---------- + X : DataFrame + The input features. + y : array-like + The target values. + test_size : float + The proportion of the dataset to include in the test split. + + Returns + ------- + None + """ + (self.X_train, + self.X_test, + self.y_train, + self.y_test) = train_test_split(X, y, + test_size=test_size, + random_state=123) + + # _, ax_class_balance = plt.subplots() + # ax_class_balance.semilogy() + # class_balance_visualizer = ClassBalance(labels=["NOT_GRB", "GRB"], ax=ax_class_balance, + # kwargs={'verbose': 2}) + # class_balance_visualizer.fit(self.y_train, self.y_test) # Fit the data to the visualizer + # class_balance_visualizer.show(outpath='/output/visualizations/class_balance.pdf') + + @staticmethod + def _resample(X, y): + """ + Resamples the input data + + Parameters + ------- + X : pd.DataFrame + input data + y : pd.Series + input label + + Returns + ------- + X_ : pd.DataFrame + resampled data + y_ : pd.Series + resampled label + """ + sm = SMOTE(sampling_strategy='minority', random_state=42) + X_, y_ = sm.fit_resample(X, y) + return X_, y_ + + def _create_pipe(self, steps): + """ + Create the machine learning pipeline from the given steps. + + Parameters + ------- + steps : list + The steps to use for the machine learning preprocessing pipeline. + + Returns + ------- + Pipeline + The created machine learning pipeline. + """ + for step in steps: + self.preprocessing.steps.append(step) + + def _print_model_eval(self): + """ + Prints the evaluation of the model, mean average error (MAE), root mean squared error (RMSE), + f1 score and confusion matrices for training and testing datasets. + """ + + train_pred = self.best_model.predict(self.X_train) + test_pred = self.best_model.predict(self.X_test) + + train_conf_matrix = confusion_matrix(self.y_train, train_pred) + test_conf_matrix = confusion_matrix(self.y_test, test_pred) + print('*' * 50) + print('Training score:') + print( + f'MAE: {round(mean_absolute_error(self.y_train, train_pred), 4)} ' + f'| RMSE: {round(mean_squared_error(self.y_train, train_pred, squared=False), 4)} ' + f'| F1: {round(f1_score(self.y_train, train_pred), 4)}' + ) + print('Confusion Matrix:') + print(train_conf_matrix) + print('-' * 20) + print('Validation score:') + print( + f'MAE: {round(mean_absolute_error(self.y_test, test_pred), 4)} ' + f'| RMSE: {round(mean_squared_error(self.y_test, test_pred, squared=False), 4)} ' + f'| F1: {round(f1_score(self.y_test, test_pred), 4)}' + ) + print('Confusion Matrix:') + print(test_conf_matrix)
+ + +# def hyperparameter_valid_curve(self, outpath): +# """ +# Validate hyperparameters and generate validation curves. +# +# Parameters +# ---------- +# outpath : str +# The output path where the validation curve plots will be saved. +# +# Returns +# ------- +# None +# """ +# best_model_name = self.best_model.steps[-1][0] +# param_grid = self.config['Models'][best_model_name]['param_grid'] +# for param in param_grid: +# # self.preprocessing.fit(self.X, self.y) +# # processed_X = self.preprocessing.transform(self.X) +# # processed_y = self.y +# param_range = param_grid[param] +# param_name = param.split('__')[1] +# print(f'Validating {param_name} over range {param_range}') +# _, ax_valid_curve = plt.subplots() +# +# valid_curve_viz = ValidationCurve(self.best_model, +# param_name=param, +# param_range=param_range, +# cv=5, +# scoring="f1", +# ax=ax_valid_curve +# ) +# valid_curve_viz.fit(self.X, self.y) +# valid_curve_viz.show(outpath=f'{outpath}/{param_name}_valid_curve.pdf') +# +# def recursive_feature_elimination_plot(self, outpath): +# """ +# Generate a recursive feature elimination plot. +# +# Parameters +# ---------- +# outpath : str +# The output path where the feature elimination plot will be saved. +# +# Returns +# ------- +# None +# """ +# _, ax_feature_elimination = plt.subplots() +# visualizer = RFECV(self.best_model.steps[-1][1], cv=5, scoring='f1_weighted', ax=ax_feature_elimination) +# visualizer.fit(self.X, self.y) # Fit the data to the visualizer +# visualizer.show(outpath=outpath + 'feature_elimination.pdf') +# +# @staticmethod +# def plot_knn_neighbors(knn, X, y, features): +# """ +# Plot the KNN neighbors for a given dataset. +# +# Parameters +# ---------- +# knn : KNeighborsClassifier +# The KNN classifier. +# X : DataFrame +# The dataset containing the features. +# y : array-like +# The target values. +# features : list +# List of feature names to plot. +# +# Returns +# ------- +# None +# """ +# +# # Select a random point +# random_index = np.random.randint(0, len(X)) +# random_point = X.iloc[random_index] +# +# # Find the neighbors of the random point +# neighbors = knn.kneighbors([random_point], return_distance=False) +# +# # Plot each pair of features +# num_features = len(features) +# for i in range(num_features): +# for j in range(i + 1, num_features): +# plt.figure(figsize=(8, 6)) +# plt.scatter(X.iloc[:, i], X.iloc[:, j], c=y, cmap='viridis', marker='o', edgecolor='k', s=50) +# plt.scatter(random_point[i], random_point[j], c='red', marker='x', s=200, label='Random Point') +# plt.scatter(X.iloc[neighbors[0], i], X.iloc[neighbors[0], j], c='red', marker='o', edgecolor='k', s=100, +# facecolors='none', label='Neighbors') +# plt.xlabel(features[i]) +# plt.ylabel(features[j]) +# plt.title(f'KNN Neighbors with {features[i]} vs {features[j]}') +# plt.legend() +# plt.savefig( +# f'/output/visualizations/knn_plots/{features[i]}_vs_{features[j]}_knn_neighbors.pdf' +# ) + + +
+ +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/_sources/index.rst.txt b/docs/build/html/_sources/index.rst.txt new file mode 100644 index 0000000..c2e6267 --- /dev/null +++ b/docs/build/html/_sources/index.rst.txt @@ -0,0 +1,24 @@ +.. vtacML documentation master file, created by + sphinx-quickstart on Wed Jun 12 23:30:54 2024. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +Welcome to vtacML's homepage! +================================== +.. include:: ../README_DOCS.md + :parser: recommonmark + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + modules + + + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/docs/build/html/_sources/modules.rst.txt b/docs/build/html/_sources/modules.rst.txt new file mode 100644 index 0000000..859060a --- /dev/null +++ b/docs/build/html/_sources/modules.rst.txt @@ -0,0 +1,13 @@ +Docs vtacML +=========== + +Pipeline +-------- + +.. automodule:: vtacML.pipeline + :members: + :undoc-members: + :show-inheritance: + :exclude-members: _split_data, _get_data, _load_data, _create_pipe, _load_config, _resample + + diff --git a/docs/build/html/_static/alabaster.css b/docs/build/html/_static/alabaster.css new file mode 100644 index 0000000..e3174bf --- /dev/null +++ b/docs/build/html/_static/alabaster.css @@ -0,0 +1,708 @@ +@import url("basic.css"); + +/* -- page layout ----------------------------------------------------------- */ + +body { + font-family: Georgia, serif; + font-size: 17px; + background-color: #fff; + color: #000; + margin: 0; + padding: 0; +} + + +div.document { + width: 940px; + margin: 30px auto 0 auto; +} + +div.documentwrapper { + float: left; + width: 100%; +} + +div.bodywrapper { + margin: 0 0 0 220px; +} + +div.sphinxsidebar { + width: 220px; + font-size: 14px; + line-height: 1.5; +} + +hr { + border: 1px solid #B1B4B6; +} + +div.body { + background-color: #fff; + color: #3E4349; + padding: 0 30px 0 30px; +} + +div.body > .section { + text-align: left; +} + +div.footer { + width: 940px; + margin: 20px auto 30px auto; + font-size: 14px; + color: #888; + text-align: right; +} + +div.footer a { + color: #888; +} + +p.caption { + font-family: inherit; + font-size: inherit; +} + + +div.relations { + display: none; +} + + +div.sphinxsidebar { + max-height: 100%; + overflow-y: auto; +} + +div.sphinxsidebar a { + color: #444; + text-decoration: none; + border-bottom: 1px dotted #999; +} + +div.sphinxsidebar a:hover { + border-bottom: 1px solid #999; +} + +div.sphinxsidebarwrapper { + padding: 18px 10px; +} + +div.sphinxsidebarwrapper p.logo { + padding: 0; + margin: -10px 0 0 0px; + text-align: center; +} + +div.sphinxsidebarwrapper h1.logo { + margin-top: -10px; + text-align: center; + margin-bottom: 5px; + text-align: left; +} + +div.sphinxsidebarwrapper h1.logo-name { + margin-top: 0px; +} + +div.sphinxsidebarwrapper p.blurb { + margin-top: 0; + font-style: normal; +} + +div.sphinxsidebar h3, +div.sphinxsidebar h4 { + font-family: Georgia, serif; + color: #444; + font-size: 24px; + font-weight: normal; + margin: 0 0 5px 0; + padding: 0; +} + +div.sphinxsidebar h4 { + font-size: 20px; +} + +div.sphinxsidebar h3 a { + color: #444; +} + +div.sphinxsidebar p.logo a, +div.sphinxsidebar h3 a, +div.sphinxsidebar p.logo a:hover, +div.sphinxsidebar h3 a:hover { + border: none; +} + +div.sphinxsidebar p { + color: #555; + margin: 10px 0; +} + +div.sphinxsidebar ul { + margin: 10px 0; + padding: 0; + color: #000; +} + +div.sphinxsidebar ul li.toctree-l1 > a { + font-size: 120%; +} + +div.sphinxsidebar ul li.toctree-l2 > a { + font-size: 110%; +} + +div.sphinxsidebar input { + border: 1px solid #CCC; + font-family: Georgia, serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox input[type="text"] { + width: 160px; +} + +div.sphinxsidebar .search > div { + display: table-cell; +} + +div.sphinxsidebar hr { + border: none; + height: 1px; + color: #AAA; + background: #AAA; + + text-align: left; + margin-left: 0; + width: 50%; +} + +div.sphinxsidebar .badge { + border-bottom: none; +} + +div.sphinxsidebar .badge:hover { + border-bottom: none; +} + +/* To address an issue with donation coming after search */ +div.sphinxsidebar h3.donation { + margin-top: 10px; +} + +/* -- body styles ----------------------------------------------------------- */ + +a { + color: #004B6B; + text-decoration: underline; +} + +a:hover { + color: #6D4100; + text-decoration: underline; +} + +div.body h1, +div.body h2, +div.body h3, +div.body h4, +div.body h5, +div.body h6 { + font-family: Georgia, serif; + font-weight: normal; + margin: 30px 0px 10px 0px; + padding: 0; +} + +div.body h1 { margin-top: 0; padding-top: 0; font-size: 240%; } +div.body h2 { font-size: 180%; } +div.body h3 { font-size: 150%; } +div.body h4 { font-size: 130%; } +div.body h5 { font-size: 100%; } +div.body h6 { font-size: 100%; } + +a.headerlink { + color: #DDD; + padding: 0 4px; + text-decoration: none; +} + +a.headerlink:hover { + color: #444; + background: #EAEAEA; +} + +div.body p, div.body dd, div.body li { + line-height: 1.4em; +} + +div.admonition { + margin: 20px 0px; + padding: 10px 30px; + background-color: #EEE; + border: 1px solid #CCC; +} + +div.admonition tt.xref, div.admonition code.xref, div.admonition a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fafafa; +} + +div.admonition p.admonition-title { + font-family: Georgia, serif; + font-weight: normal; + font-size: 24px; + margin: 0 0 10px 0; + padding: 0; + line-height: 1; +} + +div.admonition p.last { + margin-bottom: 0; +} + +div.highlight { + background-color: #fff; +} + +dt:target, .highlight { + background: #FAF3E8; +} + +div.warning { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.danger { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.error { + background-color: #FCC; + border: 1px solid #FAA; + -moz-box-shadow: 2px 2px 4px #D52C2C; + -webkit-box-shadow: 2px 2px 4px #D52C2C; + box-shadow: 2px 2px 4px #D52C2C; +} + +div.caution { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.attention { + background-color: #FCC; + border: 1px solid #FAA; +} + +div.important { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.note { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.tip { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.hint { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.seealso { + background-color: #EEE; + border: 1px solid #CCC; +} + +div.topic { + background-color: #EEE; +} + +p.admonition-title { + display: inline; +} + +p.admonition-title:after { + content: ":"; +} + +pre, tt, code { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; + font-size: 0.9em; +} + +.hll { + background-color: #FFC; + margin: 0 -12px; + padding: 0 12px; + display: block; +} + +img.screenshot { +} + +tt.descname, tt.descclassname, code.descname, code.descclassname { + font-size: 0.95em; +} + +tt.descname, code.descname { + padding-right: 0.08em; +} + +img.screenshot { + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils { + border: 1px solid #888; + -moz-box-shadow: 2px 2px 4px #EEE; + -webkit-box-shadow: 2px 2px 4px #EEE; + box-shadow: 2px 2px 4px #EEE; +} + +table.docutils td, table.docutils th { + border: 1px solid #888; + padding: 0.25em 0.7em; +} + +table.field-list, table.footnote { + border: none; + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} + +table.footnote { + margin: 15px 0; + width: 100%; + border: 1px solid #EEE; + background: #FDFDFD; + font-size: 0.9em; +} + +table.footnote + table.footnote { + margin-top: -15px; + border-top: none; +} + +table.field-list th { + padding: 0 0.8em 0 0; +} + +table.field-list td { + padding: 0; +} + +table.field-list p { + margin-bottom: 0.8em; +} + +/* Cloned from + * https://github.com/sphinx-doc/sphinx/commit/ef60dbfce09286b20b7385333d63a60321784e68 + */ +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +table.footnote td.label { + width: .1px; + padding: 0.3em 0 0.3em 0.5em; +} + +table.footnote td { + padding: 0.3em 0.5em; +} + +dl { + margin-left: 0; + margin-right: 0; + margin-top: 0; + padding: 0; +} + +dl dd { + margin-left: 30px; +} + +blockquote { + margin: 0 0 0 30px; + padding: 0; +} + +ul, ol { + /* Matches the 30px from the narrow-screen "li > ul" selector below */ + margin: 10px 0 10px 30px; + padding: 0; +} + +pre { + background: #EEE; + padding: 7px 30px; + margin: 15px 0px; + line-height: 1.3em; +} + +div.viewcode-block:target { + background: #ffd; +} + +dl pre, blockquote pre, li pre { + margin-left: 0; + padding-left: 30px; +} + +tt, code { + background-color: #ecf0f3; + color: #222; + /* padding: 1px 2px; */ +} + +tt.xref, code.xref, a tt { + background-color: #FBFBFB; + border-bottom: 1px solid #fff; +} + +a.reference { + text-decoration: none; + border-bottom: 1px dotted #004B6B; +} + +/* Don't put an underline on images */ +a.image-reference, a.image-reference:hover { + border-bottom: none; +} + +a.reference:hover { + border-bottom: 1px solid #6D4100; +} + +a.footnote-reference { + text-decoration: none; + font-size: 0.7em; + vertical-align: top; + border-bottom: 1px dotted #004B6B; +} + +a.footnote-reference:hover { + border-bottom: 1px solid #6D4100; +} + +a:hover tt, a:hover code { + background: #EEE; +} + + +@media screen and (max-width: 870px) { + + div.sphinxsidebar { + display: none; + } + + div.document { + width: 100%; + + } + + div.documentwrapper { + margin-left: 0; + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + } + + div.bodywrapper { + margin-top: 0; + margin-right: 0; + margin-bottom: 0; + margin-left: 0; + } + + ul { + margin-left: 0; + } + + li > ul { + /* Matches the 30px from the "ul, ol" selector above */ + margin-left: 30px; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .bodywrapper { + margin: 0; + } + + .footer { + width: auto; + } + + .github { + display: none; + } + + + +} + + + +@media screen and (max-width: 875px) { + + body { + margin: 0; + padding: 20px 30px; + } + + div.documentwrapper { + float: none; + background: #fff; + } + + div.sphinxsidebar { + display: block; + float: none; + width: 102.5%; + margin: 50px -30px -20px -30px; + padding: 10px 20px; + background: #333; + color: #FFF; + } + + div.sphinxsidebar h3, div.sphinxsidebar h4, div.sphinxsidebar p, + div.sphinxsidebar h3 a { + color: #fff; + } + + div.sphinxsidebar a { + color: #AAA; + } + + div.sphinxsidebar p.logo { + display: none; + } + + div.document { + width: 100%; + margin: 0; + } + + div.footer { + display: none; + } + + div.bodywrapper { + margin: 0; + } + + div.body { + min-height: 0; + padding: 0; + } + + .rtd_doc_footer { + display: none; + } + + .document { + width: auto; + } + + .footer { + width: auto; + } + + .footer { + width: auto; + } + + .github { + display: none; + } +} + + +/* misc. */ + +.revsys-inline { + display: none!important; +} + +/* Hide ugly table cell borders in ..bibliography:: directive output */ +table.docutils.citation, table.docutils.citation td, table.docutils.citation th { + border: none; + /* Below needed in some edge cases; if not applied, bottom shadows appear */ + -moz-box-shadow: none; + -webkit-box-shadow: none; + box-shadow: none; +} + + +/* relbar */ + +.related { + line-height: 30px; + width: 100%; + font-size: 0.9rem; +} + +.related.top { + border-bottom: 1px solid #EEE; + margin-bottom: 20px; +} + +.related.bottom { + border-top: 1px solid #EEE; +} + +.related ul { + padding: 0; + margin: 0; + list-style: none; +} + +.related li { + display: inline; +} + +nav#rellinks { + float: right; +} + +nav#rellinks li+li:before { + content: "|"; +} + +nav#breadcrumbs li+li:before { + content: "\00BB"; +} + +/* Hide certain items when printing */ +@media print { + div.related { + display: none; + } +} \ No newline at end of file diff --git a/docs/build/html/_static/basic.css b/docs/build/html/_static/basic.css new file mode 100644 index 0000000..e5179b7 --- /dev/null +++ b/docs/build/html/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: inherit; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/docs/build/html/_static/custom.css b/docs/build/html/_static/custom.css new file mode 100644 index 0000000..2a924f1 --- /dev/null +++ b/docs/build/html/_static/custom.css @@ -0,0 +1 @@ +/* This file intentionally left blank. */ diff --git a/docs/build/html/_static/doctools.js b/docs/build/html/_static/doctools.js new file mode 100644 index 0000000..4d67807 --- /dev/null +++ b/docs/build/html/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/build/html/_static/documentation_options.js b/docs/build/html/_static/documentation_options.js new file mode 100644 index 0000000..7e4c114 --- /dev/null +++ b/docs/build/html/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/docs/build/html/_static/file.png b/docs/build/html/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/docs/build/html/_static/file.png differ diff --git a/docs/build/html/_static/language_data.js b/docs/build/html/_static/language_data.js new file mode 100644 index 0000000..367b8ed --- /dev/null +++ b/docs/build/html/_static/language_data.js @@ -0,0 +1,199 @@ +/* + * language_data.js + * ~~~~~~~~~~~~~~~~ + * + * This script contains the language-specific data used by searchtools.js, + * namely the list of stopwords, stemmer, scorer and splitter. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; + + +/* Non-minified version is copied as a separate JS file, if available */ + +/** + * Porter Stemmer + */ +var Stemmer = function() { + + var step2list = { + ational: 'ate', + tional: 'tion', + enci: 'ence', + anci: 'ance', + izer: 'ize', + bli: 'ble', + alli: 'al', + entli: 'ent', + eli: 'e', + ousli: 'ous', + ization: 'ize', + ation: 'ate', + ator: 'ate', + alism: 'al', + iveness: 'ive', + fulness: 'ful', + ousness: 'ous', + aliti: 'al', + iviti: 'ive', + biliti: 'ble', + logi: 'log' + }; + + var step3list = { + icate: 'ic', + ative: '', + alize: 'al', + iciti: 'ic', + ical: 'ic', + ful: '', + ness: '' + }; + + var c = "[^aeiou]"; // consonant + var v = "[aeiouy]"; // vowel + var C = c + "[^aeiouy]*"; // consonant sequence + var V = v + "[aeiou]*"; // vowel sequence + + var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/docs/build/html/_static/minus.png b/docs/build/html/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/docs/build/html/_static/minus.png differ diff --git a/docs/build/html/_static/plus.png b/docs/build/html/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/docs/build/html/_static/plus.png differ diff --git a/docs/build/html/_static/pygments.css b/docs/build/html/_static/pygments.css new file mode 100644 index 0000000..07454c6 --- /dev/null +++ b/docs/build/html/_static/pygments.css @@ -0,0 +1,83 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #8f5902; font-style: italic } /* Comment */ +.highlight .err { color: #a40000; border: 1px solid #ef2929 } /* Error */ +.highlight .g { color: #000000 } /* Generic */ +.highlight .k { color: #004461; font-weight: bold } /* Keyword */ +.highlight .l { color: #000000 } /* Literal */ +.highlight .n { color: #000000 } /* Name */ +.highlight .o { color: #582800 } /* Operator */ +.highlight .x { color: #000000 } /* Other */ +.highlight .p { color: #000000; font-weight: bold } /* Punctuation */ +.highlight .ch { color: #8f5902; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #8f5902; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #8f5902 } /* Comment.Preproc */ +.highlight .cpf { color: #8f5902; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #8f5902; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #8f5902; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #a40000 } /* Generic.Deleted */ +.highlight .ge { color: #000000; font-style: italic } /* Generic.Emph */ +.highlight .gr { color: #ef2929 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #888888 } /* Generic.Output */ +.highlight .gp { color: #745334 } /* Generic.Prompt */ +.highlight .gs { color: #000000; font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #a40000; font-weight: bold } /* Generic.Traceback */ +.highlight .kc { color: #004461; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #004461; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #004461; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #004461; font-weight: bold } /* Keyword.Pseudo */ +.highlight .kr { color: #004461; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #004461; font-weight: bold } /* Keyword.Type */ +.highlight .ld { color: #000000 } /* Literal.Date */ +.highlight .m { color: #990000 } /* Literal.Number */ +.highlight .s { color: #4e9a06 } /* Literal.String */ +.highlight .na { color: #c4a000 } /* Name.Attribute */ +.highlight .nb { color: #004461 } /* Name.Builtin */ +.highlight .nc { color: #000000 } /* Name.Class */ +.highlight .no { color: #000000 } /* Name.Constant */ +.highlight .nd { color: #888888 } /* Name.Decorator */ +.highlight .ni { color: #ce5c00 } /* Name.Entity */ +.highlight .ne { color: #cc0000; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #000000 } /* Name.Function */ +.highlight .nl { color: #f57900 } /* Name.Label */ +.highlight .nn { color: #000000 } /* Name.Namespace */ +.highlight .nx { color: #000000 } /* Name.Other */ +.highlight .py { color: #000000 } /* Name.Property */ +.highlight .nt { color: #004461; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #000000 } /* Name.Variable */ +.highlight .ow { color: #004461; font-weight: bold } /* Operator.Word */ +.highlight .pm { color: #000000; font-weight: bold } /* Punctuation.Marker */ +.highlight .w { color: #f8f8f8 } /* Text.Whitespace */ +.highlight .mb { color: #990000 } /* Literal.Number.Bin */ +.highlight .mf { color: #990000 } /* Literal.Number.Float */ +.highlight .mh { color: #990000 } /* Literal.Number.Hex */ +.highlight .mi { color: #990000 } /* Literal.Number.Integer */ +.highlight .mo { color: #990000 } /* Literal.Number.Oct */ +.highlight .sa { color: #4e9a06 } /* Literal.String.Affix */ +.highlight .sb { color: #4e9a06 } /* Literal.String.Backtick */ +.highlight .sc { color: #4e9a06 } /* Literal.String.Char */ +.highlight .dl { color: #4e9a06 } /* Literal.String.Delimiter */ +.highlight .sd { color: #8f5902; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4e9a06 } /* Literal.String.Double */ +.highlight .se { color: #4e9a06 } /* Literal.String.Escape */ +.highlight .sh { color: #4e9a06 } /* Literal.String.Heredoc */ +.highlight .si { color: #4e9a06 } /* Literal.String.Interpol */ +.highlight .sx { color: #4e9a06 } /* Literal.String.Other */ +.highlight .sr { color: #4e9a06 } /* Literal.String.Regex */ +.highlight .s1 { color: #4e9a06 } /* Literal.String.Single */ +.highlight .ss { color: #4e9a06 } /* Literal.String.Symbol */ +.highlight .bp { color: #3465a4 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #000000 } /* Name.Function.Magic */ +.highlight .vc { color: #000000 } /* Name.Variable.Class */ +.highlight .vg { color: #000000 } /* Name.Variable.Global */ +.highlight .vi { color: #000000 } /* Name.Variable.Instance */ +.highlight .vm { color: #000000 } /* Name.Variable.Magic */ +.highlight .il { color: #990000 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/docs/build/html/_static/searchtools.js b/docs/build/html/_static/searchtools.js new file mode 100644 index 0000000..92da3f8 --- /dev/null +++ b/docs/build/html/_static/searchtools.js @@ -0,0 +1,619 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms, anchor) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + "Search finished, found ${resultCount} page(s) matching the search query." + ).replace('${resultCount}', resultCount); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; +// Helper function used by query() to order search results. +// Each input is an array of [docname, title, anchor, descr, score, filename]. +// Order the results by score (in opposite order of appearance, since the +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. +const _orderResultsByScoreThenName = (a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString, anchor) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + for (const removalQuery of [".headerlinks", "script", "style"]) { + htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); + } + if (anchor) { + const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); + if (anchorContent) return anchorContent.textContent; + + console.warn( + `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` + ); + } + + // if anchor not specified or not found, fall back to main content + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent) return docContent.textContent; + + console.warn( + "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + _parseQuery: (query) => { + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; + }, + + /** + * execute search (requires search index to be loaded) + */ + _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // Collect multiple result groups to be sorted separately and then ordered. + // Each is an array of [docname, title, anchor, descr, score, filename]. + const normalResults = []; + const nonMainIndexResults = []; + + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase().trim(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + normalResults.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id, isMain] of foundEntries) { + const score = Math.round(100 * queryLower.length / entry.length); + const result = [ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]; + if (isMain) { + normalResults.push(result); + } else { + nonMainIndexResults.push(result); + } + } + } + } + + // lookup as object + objectTerms.forEach((term) => + normalResults.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) { + normalResults.forEach((item) => (item[4] = Scorer.score(item))); + nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); + } + + // Sort each group of results by score and then alphabetically by name. + normalResults.sort(_orderResultsByScoreThenName); + nonMainIndexResults.sort(_orderResultsByScoreThenName); + + // Combine the result groups in (reverse) order. + // Non-main index entries are typically arbitrary cross-references, + // so display them after other results. + let results = [...nonMainIndexResults, ...normalResults]; + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + return results.reverse(); + }, + + query: (query) => { + const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); + const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + if (!terms.hasOwnProperty(word)) { + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + } + if (!titleTerms.hasOwnProperty(word)) { + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); + }); + } + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (!fileMap.has(file)) fileMap.set(file, [word]); + else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords, anchor) => { + const text = Search.htmlToText(htmlText, anchor); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/docs/build/html/_static/sphinx_highlight.js b/docs/build/html/_static/sphinx_highlight.js new file mode 100644 index 0000000..8a96c69 --- /dev/null +++ b/docs/build/html/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/build/html/genindex.html b/docs/build/html/genindex.html new file mode 100644 index 0000000..505a10c --- /dev/null +++ b/docs/build/html/genindex.html @@ -0,0 +1,188 @@ + + + + + + + Index — vtacML documentation + + + + + + + + + + + + + + + + + +
+
+ +
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/index.html b/docs/build/html/index.html new file mode 100644 index 0000000..22f893d --- /dev/null +++ b/docs/build/html/index.html @@ -0,0 +1,320 @@ + + + + + + + + Welcome to vtacML’s homepage! — vtacML documentation + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Welcome to vtacML’s homepage!

+
+

vtacML

+

vtacML is a Python package designed for the real-time analysis of data from the Visible Telescope (VT) of the SVOM satellite. This package uses machine learning models to analyze features from a list of observed VT sources and identify potential gamma-ray burst (GRB) optical afterglow candidates. vtacML is integrated into the real-time SVOM VT VHF pipeline and flags each source detected, indicating the probability that it is a GRB candidate. This information is then used by Burst Advocates (BAs) on shift to help them identify which source is the real GRB counterpart.

+
+

Table of Contents

+ +
+
+

Overview

+

The SVOM mission, a collaboration between the China National Space Administration (CNSA) and the French space agency CNES, aims to study gamma-ray bursts (GRBs), the most energetic explosions in the universe. The Visible Telescope (VT) on SVOM plays a critical role in observing these events in the optical wavelength range.

+

vtacML leverages machine learning to analyze VT data, providing a probability score for each observation to indicate its likelihood of being a GRB candidate. The package includes tools for data preprocessing, model training, evaluation, and visualization.

+
+
+

Installation

+

To install vtacML, you can use pip:

+
pip install vtacML
+
+
+

Alternatively, you can clone the repository and install the package locally:

+
git clone https://github.com/jerbeario/VTAC_ML.git
+cd vtacML
+pip install .
+
+
+
+
+

Usage

+
+

Quick Start

+

Here’s a quick example to get you started with vtacML:

+
from vtacML.pipeline import VTACMLPipe
+
+# Initialize the pipeline
+pipeline = VTACMLPipe()
+
+# Load configuration
+pipeline.load_config('path/to/config.yaml')
+
+# Train the model
+pipeline.train()
+
+# Evaluate the model
+pipeline.evaluate('evaluation_name', plot=True)
+
+# Predict GRB candidates
+predictions = pipeline.predict(observation_dataframe, prob=True)
+print(predictions)
+
+
+
+
+

Grid Search and Model Training

+

vtacML can perform grid search on a large array of models and parameters specified in the configuration file. Initialize the VTACMLPipe class with a specified config file (or use the default) and train it. Then, you can save the best model for future use.

+
from vtacML.pipeline import VTACMLPipe
+
+# Initialize the pipeline with a configuration file
+pipeline = VTACMLPipe(config_file='path/to/config.yaml')
+
+# Train the model with grid search
+pipeline.train()
+
+# Save the best model
+pipeline.save_best_model('path/to/save/best_model.pkl')
+
+
+
+
+

Loading and Using the Best Model

+

After training and saving the best model, you can create a new instance of the VTACMLPipe class and load the best model for further use.

+
from vtacML.pipeline import VTACMLPipe
+
+# Initialize a new pipeline instance
+pipeline = VTACMLPipe()
+
+# Load the best model
+pipeline.load_best_model('path/to/save/best_model.pkl')
+
+# Predict GRB candidates
+predictions = pipeline.predict(observation_dataframe, prob=True)
+print(predictions)
+
+
+
+
+

Using Pre-trained Model for Immediate Prediction

+

If you already have a trained model, you can use the quick wrapper function predict_from_best_pipeline to predict data immediately. A pre-trained model is available by default.

+
from vtacML.pipeline import predict_from_best_pipeline
+
+# Predict GRB candidates using the pre-trained model
+predictions = predict_from_best_pipeline(observation_dataframe, model_path='path/to/pretrained_model.pkl')
+print(predictions)
+
+
+
+
+

Config File

+

The config file is used to configure the model searching process.

+
# Default config file, used to search for best model using only first two sequences (X0, X1) from the VT pipeline
+Inputs:
+  file: 'combined_qpo_vt_all_cases_with_GRB_with_flags.parquet' # Data file used for training. Located in /data/
+#  path: 'combined_qpo_vt_with_GRB.parquet'
+#  path: 'combined_qpo_vt_faint_case_with_GRB_with_flags.parquet'
+  columns: [
+    "MAGCAL_R0",
+    "MAGCAL_B0",
+    "MAGERR_R0",
+    "MAGERR_B0",
+    "MAGCAL_R1",
+    "MAGCAL_B1",
+    "MAGERR_R1",
+    "MAGERR_B1",
+    "MAGVAR_R1",
+    "MAGVAR_B1",
+    'EFLAG_R0',
+    'EFLAG_R1',
+    'EFLAG_B0',
+    'EFLAG_B1',
+    "NEW_SRC",
+    "DMAG_CAT"
+    ] # features used for training
+  target_column: 'IS_GRB' # feature column that holds the class information to be predicted
+
+# Set of models and parameters to perform GridSearchCV over
+Models:
+  rfc:
+    class: RandomForestClassifier()
+    param_grid:
+      'rfc__n_estimators': [100, 200, 300]  # Number of trees in the forest
+      'rfc__max_depth': [4, 6, 8]  # Maximum depth of the tree
+      'rfc__min_samples_split': [2, 5, 10]  # Minimum number of samples required to split an internal node
+      'rfc__min_samples_leaf': [1, 2, 4]  # Minimum number of samples required to be at a leaf node
+      'rfc__bootstrap': [True, False]  # Whether bootstrap samples are used when building trees
+  ada:
+    class: AdaBoostClassifier()
+    param_grid:
+      'ada__n_estimators': [50, 100, 200]  # Number of weak learners
+      'ada__learning_rate': [0.01, 0.1, 1]  # Learning rate
+      'ada__algorithm': ['SAMME']  # Algorithm for boosting
+  svc:
+    class: SVC()
+    param_grid:
+      'svc__C': [0.1, 1, 10, 100]  # Regularization parameter
+      'svc__kernel': ['poly', 'rbf', 'sigmoid']  # Kernel type to be used in the algorithm
+      'svc__gamma': ['scale', 'auto']  # Kernel coefficient
+      'svc__degree': [3, 4, 5]  # Degree of the polynomial kernel function (if `kernel` is 'poly')
+  knn:
+    class: KNeighborsClassifier()
+    param_grid:
+      'knn__n_neighbors': [3, 5, 7, 9]  # Number of neighbors to use
+      'knn__weights': ['uniform', 'distance']  # Weight function used in prediction
+      'knn__algorithm': ['ball_tree', 'kd_tree', 'brute']  # Algorithm used to compute the nearest neighbors
+      'knn__p': [1, 2]  # Power parameter for the Minkowski metric
+  lr:
+    class: LogisticRegression()
+    param_grid:
+      'lr__penalty': ['l1', 'l2', 'elasticnet']  # Specify the norm of the penalty
+      'lr__C': [0.01, 0.1, 1, 10]  # Inverse of regularization strength
+      'lr__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']  # Algorithm to use in the optimization problem
+      'lr__max_iter': [100, 200, 300]  # Maximum number of iterations taken for the solvers to converge
+  dt:
+    class: DecisionTreeClassifier()
+    param_grid:
+      'dt__criterion': ['gini', 'entropy']  # The function to measure the quality of a split
+      'dt__splitter': ['best', 'random']  # The strategy used to choose the split at each node
+      'dt__max_depth': [4, 6, 8, 10]  # Maximum depth of the tree
+      'dt__min_samples_split': [2, 5, 10]  # Minimum number of samples required to split an internal node
+      'dt__min_samples_leaf': [1, 2, 4]  # Minimum number of samples required to be at a leaf node
+
+# Output directories
+Outputs:
+  model_path: '/output/models'
+  viz_path: '/output/visualizations/'
+  plot_correlation:
+    flag: True
+    path: 'output/corr_plots/'
+
+
+
+
+
+
+

Documentation

+
+
+
+

Contents:

+ +
+
+
+

Indices and tables

+ +
+ + +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/modules.html b/docs/build/html/modules.html new file mode 100644 index 0000000..6ee7cb1 --- /dev/null +++ b/docs/build/html/modules.html @@ -0,0 +1,241 @@ + + + + + + + + Docs vtacML — vtacML documentation + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +
+

Docs vtacML

+
+

Pipeline

+
+
+class vtacML.pipeline.VTACMLPipe(config_file='config/config.yaml')[source]
+

Bases: object

+

A machine learning pipeline for training and evaluating an optimal model for optical identification of GRBs for the SVOM mission.

+
+
Parameters:
+

config_path (str, optional) – Path to the configuration file. Default ‘config/config.yaml’

+
+
+
+
+evaluate(name, plot=False, score=<function f1_score>)[source]
+

Evaluate the best model with various metrics and visualization.

+
+
Parameters:
+
    +
  • name (str) – The name for the evaluation output.

  • +
  • plot (bool, optional) – If True, generates and saves evaluation plots, by default False.

  • +
  • score (callable, optional) – The scoring function to use for evaluation, by default f1_score.

  • +
+
+
+
+ +
+
+load_best_model(model_name)[source]
+

Loads ‘model_name’ into current pipeline.

+
+
Parameters:
+

model_name (str) – The name of the model from the Outputs/models/ directory to be loaded.

+
+
+
+ +
+
+load_config(config_file)[source]
+

Load the configuration file and prepare the data.

+
+
Parameters:
+

config_file (str) – The path to the configuration file.

+
+
+
+ +
+
+predict(X, prob=False)[source]
+

Predict using the best model.

+
+
Parameters:
+
    +
  • X (DataFrame) – The input features for prediction.

  • +
  • prob (bool, optional) – If True, returns the probability of the predictions, by default False.

  • +
+
+
Returns:
+

The predicted values or probabilities.

+
+
Return type:
+

ndarray

+
+
+
+ +
+
+save_best_model(model_name='best_model', model_path=None)[source]
+

Saves best model from training to the specified path in the config file. Optionally change name and/or path +of the model.

+
+
Parameters:
+
    +
  • model_name (str, optional) – Name of the model to be saved. Default=’best_model’.

  • +
  • model_path (str, optional) – Path to the model to be saved. Default=’model_path’ in config file

  • +
+
+
+
+ +
+
+train(save_all_model=False, resample_flag=False, scoring='f1', cv=5)[source]
+

Train the pipeline with the given data.

+
+
Parameters:
+
    +
  • save_all_model (bool, optional) – Whether to save best model of each model type to output directory. Default is False.

  • +
  • resample_flag (bool, optional) – Whether to resample the data. Default is False

  • +
  • scoring (str, optional) – The scoring function to use. Default is ‘f1’.

  • +
  • cv (int, optional) – The cross-validation split to use. Default is 5.

  • +
+
+
Returns:
+

Trained machine learning pipeline.

+
+
Return type:
+

Pipeline

+
+
+
+ +
+ +
+
+vtacML.pipeline.predict_from_best_pipeline(X: DataFrame, prob_flag=False, model_name='0.974_rfc_best_model.pkl', config_path=None)[source]
+

Predict using the best model pipeline.

+
+
Parameters:
+
    +
  • X (array-like) – Features to predict.

  • +
  • prob_flag (bool, optional) – Whether to return probabilities, by default False.

  • +
  • model_name (str, optional) – Name of the model to use, by default ‘0.974_rfc_best_model.pkl’

  • +
  • model_path (str, optional) – Path to the model to use for prediction, by default ‘None’

  • +
  • config_path (str, optional) – Path to the configuration file, by default ‘../config/config.yaml’.

  • +
+
+
Returns:
+

Predicted values or probabilities.

+
+
Return type:
+

ndarray

+
+
+
+ +
+
+ + +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/objects.inv b/docs/build/html/objects.inv new file mode 100644 index 0000000..ed90b90 --- /dev/null +++ b/docs/build/html/objects.inv @@ -0,0 +1,5 @@ +# Sphinx inventory version 2 +# Project: vtacML +# Version: +# The remainder of this file is compressed using zlib. +xڭJ0y^&zPPXɴ Ihbo瓘:]LaQv63b;P+]g6@kjظfۻb_vƅvM8r=@Z+Ж>TB7aM5\Rp1qseΣUێ"ʚSJ e$r!ζp~\5iżlC(ۻ6oE.nʎ$S&%j꘦{+_,)Y;yh ͈y2^}S8 \ No newline at end of file diff --git a/docs/build/html/py-modindex.html b/docs/build/html/py-modindex.html new file mode 100644 index 0000000..db67ed4 --- /dev/null +++ b/docs/build/html/py-modindex.html @@ -0,0 +1,123 @@ + + + + + + + Python Module Index — vtacML documentation + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ + +

Python Module Index

+ +
+ v +
+ + + + + + + + + + +
 
+ v
+ vtacML +
    + vtacML.pipeline +
+ + +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/search.html b/docs/build/html/search.html new file mode 100644 index 0000000..5bce26c --- /dev/null +++ b/docs/build/html/search.html @@ -0,0 +1,120 @@ + + + + + + + Search — vtacML documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + +
+ +

Search

+ + + + +

+ Searching for multiple words only shows matches that contain + all words. +

+ + +
+ + + +
+ + +
+ + +
+ +
+
+ +
+
+ + + + + + + \ No newline at end of file diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js new file mode 100644 index 0000000..3c633e8 --- /dev/null +++ b/docs/build/html/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"alltitles": {"Config File": [[0, "config-file"]], "Contents:": [[0, null]], "Docs vtacML": [[1, "docs-vtacml"]], "Documentation": [[0, "documentation"]], "Grid Search and Model Training": [[0, "grid-search-and-model-training"]], "Indices and tables": [[0, "indices-and-tables"]], "Installation": [[0, "installation"]], "Loading and Using the Best Model": [[0, "loading-and-using-the-best-model"]], "Overview": [[0, "overview"]], "Pipeline": [[1, "module-vtacML.pipeline"]], "Quick Start": [[0, "quick-start"]], "Table of Contents": [[0, "table-of-contents"]], "Usage": [[0, "usage"]], "Using Pre-trained Model for Immediate Prediction": [[0, "using-pre-trained-model-for-immediate-prediction"]], "Welcome to vtacML\u2019s homepage!": [[0, "welcome-to-vtacml-s-homepage"]], "vtacML": [[0, "vtacml"]]}, "docnames": ["index", "modules"], "envversion": {"sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["index.rst", "modules.rst"], "indexentries": {"evaluate() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.evaluate", false]], "load_best_model() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.load_best_model", false]], "load_config() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.load_config", false]], "module": [[1, "module-vtacML.pipeline", false]], "predict() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.predict", false]], "predict_from_best_pipeline() (in module vtacml.pipeline)": [[1, "vtacML.pipeline.predict_from_best_pipeline", false]], "save_best_model() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.save_best_model", false]], "train() (vtacml.pipeline.vtacmlpipe method)": [[1, "vtacML.pipeline.VTACMLPipe.train", false]], "vtacml.pipeline": [[1, "module-vtacML.pipeline", false]], "vtacmlpipe (class in vtacml.pipeline)": [[1, "vtacML.pipeline.VTACMLPipe", false]]}, "objects": {"vtacML": [[1, 0, 0, "-", "pipeline"]], "vtacML.pipeline": [[1, 1, 1, "", "VTACMLPipe"], [1, 3, 1, "", "predict_from_best_pipeline"]], "vtacML.pipeline.VTACMLPipe": [[1, 2, 1, "", "evaluate"], [1, 2, 1, "", "load_best_model"], [1, 2, 1, "", "load_config"], [1, 2, 1, "", "predict"], [1, 2, 1, "", "save_best_model"], [1, 2, 1, "", "train"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "terms": {"0": [0, 1], "01": 0, "1": 0, "10": 0, "100": 0, "2": 0, "200": 0, "3": 0, "300": 0, "4": 0, "5": [0, 1], "50": 0, "6": 0, "7": 0, "8": 0, "9": 0, "974_rfc_best_model": 1, "A": [0, 1], "If": [0, 1], "The": [0, 1], "Then": 0, "To": 0, "ada": 0, "ada__algorithm": 0, "ada__learning_r": 0, "ada__n_estim": 0, "adaboostclassifi": 0, "administr": 0, "advoc": 0, "after": 0, "afterglow": 0, "agenc": 0, "aim": 0, "algorithm": 0, "alreadi": 0, "altern": 0, "an": [0, 1], "analysi": 0, "analyz": 0, "ar": 0, "arrai": [0, 1], "auto": 0, "avail": 0, "ba": 0, "ball_tre": 0, "base": 1, "being": 0, "best": 1, "best_model": [0, 1], "between": 0, "bool": 1, "boost": 0, "bootstrap": 0, "brute": 0, "build": 0, "burst": 0, "callabl": 1, "can": 0, "candid": 0, "cd": 0, "cg": 0, "chang": 1, "china": 0, "choos": 0, "class": [0, 1], "clone": 0, "cne": 0, "cnsa": 0, "coeffici": 0, "collabor": 0, "column": 0, "com": 0, "combined_qpo_vt_all_cases_with_grb_with_flag": 0, "combined_qpo_vt_faint_case_with_grb_with_flag": 0, "combined_qpo_vt_with_grb": 0, "comput": 0, "config": 1, "config_fil": [0, 1], "config_path": 1, "configur": [0, 1], "converg": 0, "corr_plot": 0, "counterpart": 0, "creat": 0, "critic": 0, "cross": 1, "current": 1, "cv": 1, "data": [0, 1], "datafram": 1, "decisiontreeclassifi": 0, "default": [0, 1], "degre": 0, "depth": 0, "design": 0, "detect": 0, "directori": [0, 1], "distanc": 0, "dmag_cat": 0, "doc": 0, "dt": 0, "dt__criterion": 0, "dt__max_depth": 0, "dt__min_samples_leaf": 0, "dt__min_samples_split": 0, "dt__splitter": 0, "each": [0, 1], "eflag_b0": 0, "eflag_b1": 0, "eflag_r0": 0, "eflag_r1": 0, "elasticnet": 0, "energet": 0, "entropi": 0, "evalu": [0, 1], "evaluation_nam": 0, "event": 0, "exampl": 0, "explos": 0, "f1": 1, "f1_score": 1, "fals": [0, 1], "featur": [0, 1], "file": 1, "first": 0, "flag": 0, "forest": 0, "french": 0, "from": [0, 1], "function": [0, 1], "further": 0, "futur": 0, "gamma": 0, "gener": 1, "get": 0, "gini": 0, "git": 0, "github": 0, "given": 1, "grb": [0, 1], "gridsearchcv": 0, "have": 0, "help": 0, "here": 0, "hold": 0, "http": 0, "i": [0, 1], "identif": 1, "identifi": 0, "import": 0, "includ": 0, "index": 0, "inform": 0, "initi": 0, "input": [0, 1], "instanc": 0, "int": 1, "integr": 0, "intern": 0, "invers": 0, "is_grb": 0, "iter": 0, "its": 0, "jerbeario": 0, "kd_tree": 0, "kernel": 0, "kneighborsclassifi": 0, "knn": 0, "knn__algorithm": 0, "knn__n_neighbor": 0, "knn__p": 0, "knn__weight": 0, "l1": 0, "l2": 0, "larg": 0, "lbfg": 0, "leaf": 0, "learn": [0, 1], "learner": 0, "leverag": 0, "liblinear": 0, "like": 1, "likelihood": 0, "list": 0, "load": 1, "load_best_model": [0, 1], "load_config": [0, 1], "local": 0, "locat": 0, "logisticregress": 0, "lr": 0, "lr__c": 0, "lr__max_it": 0, "lr__penalti": 0, "lr__solver": 0, "machin": [0, 1], "magcal_b0": 0, "magcal_b1": 0, "magcal_r0": 0, "magcal_r1": 0, "magerr_b0": 0, "magerr_b1": 0, "magerr_r0": 0, "magerr_r1": 0, "magvar_b1": 0, "magvar_r1": 0, "maximum": 0, "measur": 0, "metric": [0, 1], "minimum": 0, "minkowski": 0, "mission": [0, 1], "model": 1, "model_nam": 1, "model_path": [0, 1], "modul": 0, "most": 0, "name": 1, "nation": 0, "ndarrai": 1, "nearest": 0, "neighbor": 0, "new": 0, "new_src": 0, "newton": 0, "node": 0, "none": 1, "norm": 0, "number": 0, "object": 1, "observ": 0, "observation_datafram": 0, "onli": 0, "optic": [0, 1], "optim": [0, 1], "option": 1, "output": [0, 1], "over": 0, "packag": 0, "page": 0, "param_grid": 0, "paramet": [0, 1], "parquet": 0, "path": [0, 1], "penalti": 0, "perform": 0, "pip": 0, "pipelin": 0, "pkl": [0, 1], "plai": 0, "plot": [0, 1], "plot_correl": 0, "poli": 0, "polynomi": 0, "potenti": 0, "power": 0, "predict": 1, "predict_from_best_pipelin": [0, 1], "prepar": 1, "preprocess": 0, "pretrained_model": 0, "print": 0, "prob": [0, 1], "prob_flag": 1, "probabl": [0, 1], "problem": 0, "process": 0, "provid": 0, "python": 0, "qualiti": 0, "rai": 0, "random": 0, "randomforestclassifi": 0, "rang": 0, "rate": 0, "rbf": 0, "real": 0, "regular": 0, "repositori": 0, "requir": 0, "resampl": 1, "resample_flag": 1, "return": 1, "rfc": 0, "rfc__bootstrap": 0, "rfc__max_depth": 0, "rfc__min_samples_leaf": 0, "rfc__min_samples_split": 0, "rfc__n_estim": 0, "role": 0, "sag": 0, "saga": 0, "samm": 0, "sampl": 0, "satellit": 0, "save": [0, 1], "save_all_model": 1, "save_best_model": [0, 1], "scale": 0, "score": [0, 1], "sequenc": 0, "set": 0, "shift": 0, "sigmoid": 0, "solver": 0, "sourc": [0, 1], "space": 0, "specifi": [0, 1], "split": [0, 1], "str": 1, "strategi": 0, "strength": 0, "studi": 0, "svc": 0, "svc__c": 0, "svc__degre": 0, "svc__gamma": 0, "svc__kernel": 0, "svom": [0, 1], "taken": 0, "target_column": 0, "telescop": 0, "them": 0, "thi": 0, "time": 0, "tool": 0, "train": 1, "tree": 0, "true": [0, 1], "two": 0, "type": [0, 1], "uniform": 0, "univers": 0, "us": 1, "valid": 1, "valu": 1, "variou": 1, "vhf": 0, "visibl": 0, "visual": [0, 1], "viz_path": 0, "vt": 0, "vtac_ml": 0, "vtacmlpip": [0, 1], "wavelength": 0, "weak": 0, "weight": 0, "when": 0, "whether": [0, 1], "which": 0, "wrapper": 0, "x": 1, "x0": 0, "x1": 0, "yaml": [0, 1], "you": 0}, "titles": ["Welcome to vtacML\u2019s homepage!", "Docs vtacML"], "titleterms": {"": 0, "best": 0, "config": 0, "content": 0, "doc": 1, "document": 0, "file": 0, "grid": 0, "homepag": 0, "immedi": 0, "indic": 0, "instal": 0, "load": 0, "model": 0, "overview": 0, "pipelin": 1, "pre": 0, "predict": 0, "quick": 0, "search": 0, "start": 0, "tabl": 0, "train": 0, "us": 0, "usag": 0, "vtacml": [0, 1], "welcom": 0}}) \ No newline at end of file