Skip to content

Latest commit

 

History

History
296 lines (233 loc) · 9.2 KB

README.rst

File metadata and controls

296 lines (233 loc) · 9.2 KB

sigcalc

Sigcalc is a python module for expressing quantities with significant figures and performing calculations on quantities based on the rules of significant figures.

Installation

Install sigcalc with pip:

pip install sigcalc

or with poetry:

poetry add sigcalc

sigcalc depends on the internal decimal module for arithmetic and mpmath for transcendental and other functions.

Usage

Import the Quantity class:

>>> from sigcalc import Quantity
>>> from decimal import getcontext
>>> getcontext().prec = 28

Create Quantity objects as necessary:

>>> a = Quantity("3.14", "3")
>>> b = Quantity("2.72", "3")

The precision of the underlying decimal context should adjust automatically to contain the number of digits specified or the number of significant figures, within the limits of the decimal module.

Alternatively, create a Quantity object from a Decimal:

>>> a = Quantity.from_decimal("3.14")
>>> b = Quantity("3.14", "3")
>>> a == b
True

The resulting significant figures is derived from the places in the specified value.

Or generate randomly over a range:

>>> a = Quantity.random("273.15", "373.15")

which is helpful for generating exercises for classes.

Arithmetic for Quantity objects is implemented on the usual magic methods:

>>> from sigcalc import Quantity
>>> from decimal import getcontext
>>> from decimal import ROUND_HALF_EVEN
>>> getcontext().prec = 28
>>> getcontext().rounding = ROUND_HALF_EVEN
>>> a = Quantity("3.14", "3")
>>> b = Quantity("2.72", "3")
>>> a + b
Quantity("5.86", "3")
>>> a - b
Quantity("0.42", "2")
>>> a * b
Quantity("8.5408", "3")
>>> a / b
Quantity("1.154411764705882352941176471", "3")
>>> abs(a)
Quantity("3.14", "3")
>>> -a
Quantity("-3.14", "3")
>>> +a
Quantity("3.14", "3")

Beware that rounding is not performed during calculations and that reported significant figures for calculated values are for the unrounded value. For example, a calculation that resulted in a result of Quantity("99.9", "3") could round to Quantity("100.0", "4"), depending on the current rounding mode.

Note that __floordiv__ is not implemented as it is not useful for significant figures calculations:

>>> a // b
Traceback (most recent call last):
TypeError: unsupported operand type(s) for //: 'Quantity' and 'Quantity'

Comparisons behave as expected for real numbers, with the exception equality and significance. Since quantities with different significance have different meanings, they are not equal as quantity objects:

>>> from sigcalc import Quantity
>>> a = Quantity("3.135", "3")
>>> b = Quantity("3.135", "4")
>>> c = Quantity("3.145", "3")
>>> a == a
True
>>> a == b
False
>>> a != b
True
>>> a < b
False
>>> a <= b
False

Equal constants should be equal regardless of the significant figures of the instance.

Rounding affects comparisons as well:

>>> from decimal import ROUND_HALF_EVEN
>>> from decimal import ROUND_HALF_UP
>>> from decimal import getcontext
>>> getcontext().rounding = ROUND_HALF_EVEN
>>> a < c
False
>>> a == c
True
>>> a <= c
True
>>> getcontext().rounding = ROUND_HALF_UP
>>> a < c
True
>>> a == c
False
>>> a <= c
True

Rounding and output are tied together. Typically, rounding is unnecessary except for output but is available:

>>> a = Quantity("3.14", "2")
>>> a.round()
Quantity("3.1", "2")
>>> a
Quantity("3.14", "2")

Rounding constants has no effect:

>>> a = Quantity("3.145", "3", constant=True)
>>> a.round()
Quantity("3.145", "28", constant=True)

String output uses the underlying decimal module's string output after rounding to the correct significant figures:

>>> from decimal import ROUND_HALF_EVEN
>>> from decimal import ROUND_HALF_UP
>>> from decimal import getcontext
>>> a = Quantity("3.145", "3")
>>> getcontext().rounding = ROUND_HALF_UP
>>> str(a)
'3.15'
>>> getcontext().rounding = ROUND_HALF_EVEN
>>> str(a)
'3.14'

The rounding mode is controlled by the decimal module contexts and context managers. The default rounding mode for the decimal module is decimal.ROUND_HALF_EVEN while the rounding used in most textbook discussions of significant figures is decimal.ROUND_HALF_UP, so beware.

Likewise with formatting:

>>> getcontext().rounding = ROUND_HALF_UP
>>> format(a, ".2e")
'3.15e+0'
>>> getcontext().rounding = ROUND_HALF_EVEN
>>> format(b, ".2e")
'3.14e+0'

Power and Square Root Functions

The power and square root (__pow__() and sqrt()) functions and are implemented as wrappers around the appropriate functions from decimal.Decimal, calculating results based on the value of a Quantity combined with the correct significant figures, following the "significance in, significance out" rule for both functions.

Exponential and Logarithmic Functions

The exponential and logarithmic (exp(), exp10(), ln(), and log10()) functions are implemented as wrappers around the corresponding functions from decimal to calculate the value of a Quantity combined with the correct significant figures. Abscissa digits are treated as placeholders so a logarithm will increase significance by the number of significant abscissa digits; exponentials will decrease the significance by the number of significant abscissa digits. Consequently, if a Quantity has significant figures less than or equal to the number of abscissa digits, a RuntimeWarning will be raised and a Quantity with zero significant figures will be returned. See the references for more information.

Transcendental Functions

The transcendental functions and their inverses are implemented as wrappers around the appropriate functions from mpmath, calculating results based on the value of a Quantity combined with the correct significant figures, following the "significance in, significance out" rule.

Hyperbolic Functions

The hyperbolic functions and their inverses are implemented as wrappers around the appropriate functions from mpmath, calculating results based on the value of a Quantity combined with the correct significant figures, following the "significance in, significance out" rule.

References

sigcalc implements significant figures calculations as commonly described in high school and undergraduate chemistry and physics textbooks, examples of which may be found at:

  1. Significant Figures at Wikipedia
  2. Significance Arithmetic at Wikipedia
  3. Myers, R.T.; Tocci, S.; Oldham, K.B., Holt Chemistry, Holt, Rinehart and Winston: 2006.
  4. "How many significant figures in 0.0"

Thanks to the developers of Python's decimal module, the mpmath library, and the hypothesis testing library, without which, this would be a much smaller and less functional library.

Thanks also to LibreTexts Mathematics for their reference on hyperbolic functions.

Remember, calculating with significant figures is not a substitute for repetition of measurements and proper statistical analysis.

Copyright and License

SPDX-License-Identifier: GPL-3.0-or-later

sigcalc, significant figures calculations

Copyright (C) 2023-2024 Jeremy A Gray.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see https://www.gnu.org/licenses/.

Author

Jeremy A Gray