-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdata_utils.py
159 lines (141 loc) · 6.56 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import matplotlib
# Force matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import scipy.io
from scipy import signal
import scipy.io.wavfile as wav
import librosa
import random
from sklearn import preprocessing
import tensorflow as tf
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
class dataPreprocessor(object):
def __init__(self, record_name, noisy_filelist=None, clean_filelist=None, use_waveform=True):
self.noisy_filelist = noisy_filelist
self.clean_filelist = clean_filelist
self.use_waveform = use_waveform
self.record_path = "/mnt/gv0/user_sylar/segan_data"
self.record_name = record_name
if use_waveform:
self.FRAMELENGTH = 16384
self.OVERLAP = self.FRAMELENGTH//2
else:
self.FRAMELENGTH = 8*8
self.OVERLAP = self.FRAMELENGTH//8
if noisy_filelist and clean_filelist:
print('Write records')
else:
print('Read-only mode')
def slice_signal(self, signal, window_size, overlap):
""" Return windows of the given signal by sweeping in stride fractions
of window
"""
n_samples = signal.shape[0]
offset = overlap
slices = []
for beg_i, end_i in zip(range(0, n_samples, offset),
range(window_size, n_samples + offset,
offset)):
if end_i - beg_i < window_size:
break
slice_ = signal[beg_i:end_i]
if slice_.shape[0] == window_size:
slices.append(slice_)
return np.array(slices, dtype=np.int32)
def read_and_slice(self, filename):
sr, wav_data = wav.read(filename)
print(wav_data)
if sr != 16000:
raise ValueError('Sampling rate is expected to be 16kHz!')
signals = self.slice_signal(wav_data, self.FRAMELENGTH, self.OVERLAP)
return signals
def make_spectrum(self, filename, use_normalize):
sr, y = wav.read(filename)
if sr != 16000:
raise ValueError('Sampling rate is expected to be 16kHz!')
if y.dtype!='float32':
y = np.float32(y/32767.)
D=librosa.stft(y,n_fft=512,hop_length=256,win_length=512,window=scipy.signal.hamming)
Sxx=np.log10(abs(D)**2)
if use_normalize:
mean = np.mean(Sxx, axis=1).reshape((257,1))
std = np.std(Sxx, axis=1).reshape((257,1))+1e-12
Sxx = (Sxx-mean)/std
slices = []
for i in range(0, Sxx.shape[1]-self.FRAMELENGTH, self.OVERLAP):
slices.append(Sxx[:,i:i+self.FRAMELENGTH])
return np.array(slices)
def write_tfrecord(self):
if self.noisy_filelist is None or self.clean_filelist is None:
raise ValueError('Read-only mode\nCreate an instance by specifying a filename.')
if tf.gfile.Exists(self.record_path):
print('Folder already exists: {}\n'.format(self.record_path))
else:
tf.gfile.MkDir(self.record_path)
nlist = [x[:-1] for x in open(self.noisy_filelist).readlines()]
clist = [x[:-1] for x in open(self.clean_filelist).readlines()]
assert len(nlist) == len(clist)
out_file = tf.python_io.TFRecordWriter(self.record_path+self.record_name)
if self.use_waveform:
for n,c in zip(nlist, clist):
print(n,c)
wav_signals = self.read_and_slice(c)
noisy_signals = self.read_and_slice(n)
print(wav_signals)
for (wav, noisy) in zip(wav_signals, noisy_signals):
wav_raw = wav.tostring()
noisy_raw = noisy.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'wav_raw': _bytes_feature(wav_raw),
'noisy_raw': _bytes_feature(noisy_raw)}))
out_file.write(example.SerializeToString())
out_file.close()
else:
for n,c in zip(nlist, clist):
print(n,c)
wav_signals = self.make_spectrum(c, False)
noisy_signals = self.make_spectrum(n, True)
for (wav, noisy) in zip(wav_signals, noisy_signals):
print(wav.shape, noisy.shape)
wav_raw = wav.tostring()
noisy_raw = noisy.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'wav_raw': _bytes_feature(wav_raw),
'noisy_raw': _bytes_feature(noisy_raw)}))
out_file.write(example.SerializeToString())
out_file.close()
def read_and_decode(self,batch_size=16, num_threads=8):
filename_queue = tf.train.string_input_producer([self.record_path+self.record_name])
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'wav_raw': tf.FixedLenFeature([], tf.string),
'noisy_raw': tf.FixedLenFeature([], tf.string),
})
if self.use_waveform:
wave = tf.decode_raw(features['wav_raw'], tf.int32)
wave.set_shape(self.FRAMELENGTH)
wave = (2./65535.) * tf.cast((wave - 32767), tf.float32) + 1.
wave = tf.reshape(wave, [1,-1,1])
noisy = tf.decode_raw(features['noisy_raw'], tf.int32)
noisy.set_shape(self.FRAMELENGTH)
noisy = (2./65535.) * tf.cast((noisy - 32767), tf.float32) + 1.
noisy = tf.reshape(noisy, [1,-1,1])
else:
wave = tf.decode_raw(features['wav_raw'], tf.float32)
wave = tf.reshape(wave,[1,257,self.FRAMELENGTH])
noisy = tf.decode_raw(features['noisy_raw'], tf.float32)
noisy = tf.reshape(noisy,[1,257,self.FRAMELENGTH])
wavebatch, noisybatch = tf.train.shuffle_batch([wave,
noisy],
batch_size=batch_size,
num_threads=num_threads,
capacity=1000 + 3 * batch_size,
min_after_dequeue=1000,
name='wav_and_noisy')
return wavebatch, noisybatch