Skip to content

Latest commit

 

History

History
87 lines (67 loc) · 4.46 KB

Examples.md

File metadata and controls

87 lines (67 loc) · 4.46 KB

Examples

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean at egestas felis. Sed tempor dapibus nibh. Nam convallis purus eu turpis iaculis dictum. Vivamus et purus arcu. Aliquam fringilla, eros ut tempor ultricies, nibh ligula tristique magna, ac venenatis dui lectus eu eros.

Solve one variable

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean at egestas felis. Sed tempor dapibus nibh. Nam convallis purus eu turpis iaculis dictum. Vivamus et purus arcu. Aliquam fringilla, eros ut tempor ultricies, nibh ligula tristique magna, ac venenatis dui lectus eu eros.

  1. $\left( 5\pi - 10 \arcsin(x) - 10x \sqrt{1-x^{2}} \right) - 12.4$
Input Value
Function ( 5 * pi - 10 * asin(x) - 10 * x * sqrt(1 - (x**2)) ) - 12.4
Limit x left -1
Limit x right: 1
Limit y up 5
Limit y down -5
Iteration 30
Tolerance 1e-3
$x_{0}$ -0.76
$x_{1}$ 0.99
  1. $e^{x} - 2 - \cos(e^{x} - 2)$
Input Value
Function exp(x) - 2 - cos(exp(x) - 2)
Limit x left -4
Limit x right 2
Limit y up 2
Limit y down -2
Iteration 30
Tolerance 1e-3
$x_{0}$ 0.5
$x_{1}$ 2

Differential equations

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean at egestas felis. Sed tempor dapibus nibh. Nam convallis purus eu turpis iaculis dictum. Vivamus et purus arcu. Aliquam fringilla, eros ut tempor ultricies, nibh ligula tristique magna, ac venenatis dui lectus eu eros.

  1. $\textcolor{red}{ \frac{dy}{dx} }= y(x) - x^2 + 1$
Input Value
Function y(x).diff(x)=y(x)-x**2+1
Initial X 0
Initial Y 0.5
Steps 4
Max Value 2
  1. $\textcolor{red}{ \frac{dy}{dx} } = \frac{x^2 - 1}{y^2}$
Input Value
Function y(x).diff(x)=(x**2-1)/(y(x)**2)
Initial X 0
Initial Y 2
Steps 5
Max Value 1
  1. $\textcolor{red}{ \frac{dy}{dx} } = \frac{e^{-x} \sin(2x)}{x} - \frac{1 + x}{x} y(x)$
Input Value
Function diff(y(x)) = ((exp(-x) * sin(2*x))/x) -((1 + x)/x)*y(x)
Initial X 1
Initial Y 2
Steps 10
Max Value 3
  1. $\textcolor{red}{ \frac{dy}{dx} } = \frac{2}{x} y(x) + x^{2} e^{x}$
Input Value
Function y(x).diff(x)=(2/x)*y(x)+x**2*exp(x)
Initial X 1
Initial Y 0
Steps 10
Max Value 2

how to write function for input function

  • asin(x)
  • exp(x)
  • ln(x)
  • log(x)/log(10) log base 10