-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_tagger.py
89 lines (77 loc) · 2.74 KB
/
build_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from __future__ import print_function
import random
import sys
import HMMTagger
class BuildTagger():
pairs = []
def __init__(self, train_file, dev_test_file, model_file):
self.train_file = sys.argv[1]
self.dev_test_file = sys.argv[2]
self.model_file = sys.argv[3]
self.pairs = self.parse_tokens(self.train_file)
def parse_tokens(self, filename):
with open(filename) as t:
# corpus is sufficiently small that we can just hold it
# (and model in memory)
c = t.read()
cl = c.split()
return tuple(tuple(wt.rsplit("/", 1)) for wt in cl)
"""
def train_naive_model(self, model):
for token, tag in self.pairs:
model.learn(tag, token)
"""
def train_model(self, model):
ngram = ()
i = 0
l = len(self.pairs)
for token, tag in self.pairs:
print("training ", i, " of ", l)
i += 1
ngram = ngram[-model.max_n + 1:] + (tag,)
model.learn(ngram, token)
def parse_test_data(self, filename):
with open(filename) as tf:
test_pairs = tf.read().split()
return [test_pair.rsplit("/", 1) for test_pair in test_pairs]
def test(self, model, test_pairs):
words = []
tags = []
for w, t in test_pairs:
words.append(w)
tags.append(t)
predicted = self.tag_sequence(model, tuple(words))
error = 0
for i in range(len(tags)):
if tags[i] != predicted[i]:
error += 1
return float(error) / len(tags)
def tag_sequence(self, model, sequence):
return model.tag(sequence)
if __name__ == "__main__":
train_file = sys.argv[1]
dev_test_file = sys.argv[2]
model_file = sys.argv[3]
bt = BuildTagger(train_file, dev_test_file, model_file)
hmm = HMMTagger.HMMTagger(2)
params = [0.000000000001, 0.00000001,
0.0001, 0.01, 0.25, 0.5, 0.75, 0.87, 0.93]
test_tags = bt.parse_test_data(dev_test_file)
bt.train_model(hmm)
sampled = [test_tags[i:i + 100]
for i in [random.randint(0, len(test_tags) - 100) for _ in range(10)]]
sampled = [item for sublist in sampled for item in sublist] # flatten
max_emit = max_transit = 0.000000000001
min_error = 1
for emit_d in params:
for transit_d in params:
hmm.transit_discount = transit_d
hmm.emit_discount = emit_d
error = bt.test(hmm, sampled)
if error < min_error:
min_error = error
max_transit = transit_d
max_emit = emit_d
hmm.transit_discount = max_transit
hmm.emit_discount = max_emit
hmm.write_model(model_file)