-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcross_validation.py
82 lines (70 loc) · 2.54 KB
/
cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from __future__ import print_function
import random
import sys
import cProfile
import NaiveTagger
import HMMTagger
class BuildTagger():
pairs = []
def __init__(self, train_file, dev_test_file, model_file):
self.train_file = sys.argv[1]
self.dev_test_file = sys.argv[2]
self.model_file = sys.argv[3]
self.pairs = self.parse_tokens(self.train_file)
def parse_tokens(self, filename):
with open(filename) as t:
# corpus is sufficiently small that we can just hold it
# (and model in memory)
c = t.read()
cl = c.split()
return tuple(tuple(wt.rsplit("/", 1)) for wt in cl)
def train_naive_model(self, model):
for token, tag in self.pairs:
model.learn(tag, token)
def train_model(self, model, pairs):
ngram = ()
i = 0
l = len(pairs)
for token, tag in pairs:
print("training ", i, " of ", l)
i += 1
ngram = ngram[-model.max_n + 1:] + (tag,)
model.learn(ngram, token)
def parse_test_data(self, filename):
with open(filename) as tf:
test_pairs = tf.read().split()
return [test_pair.rsplit("/", 1) for test_pair in test_pairs]
def test(self, model, test_pairs):
words = []
tags = []
for w, t in test_pairs:
words.append(w)
tags.append(t)
predicted = self.tag_sequence(model, tuple(words))
error = 0
for i in range(len(tags)):
if tags[i] != predicted[i]:
error += 1
return float(error) / len(tags)
def tag_sequence(self, model, sequence):
return model.tag(sequence)
if __name__ == "__main__":
train_file = sys.argv[1]
dev_test_file = sys.argv[2]
model_file = sys.argv[3]
bt = BuildTagger(train_file, dev_test_file, model_file)
test_tags = bt.parse_test_data(train_file)
with open("kfold", "w+") as f:
for i in range(10):
hmm = HMMTagger.HMMTagger(2, 0.0000000000001, 0.0000000000001)
test_start, test_end = len(bt.pairs) * \
i // 10, len(bt.pairs) * (i + 1) // 10
bt.train_model(
hmm, bt.pairs[0:test_start] + bt.pairs[test_end:len(bt.pairs)])
error = bt.test(hmm, bt.pairs[test_start:test_end])
print("k: %d ,accuracy: %.8f" %
(i, 1 - error), file=f)
f.flush()
print("k: %d ,accuracy: %.8f" %
(i, 1 - error))
sys.stdout.flush()