-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_tagger.py
54 lines (43 loc) · 1.47 KB
/
run_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from __future__ import print_function
import random
import sys
import HMMTagger
class RunTagger():
def __init__(self, train_file, dev_test_file, model_file):
self.test_file = sys.argv[1]
self.model_file = sys.argv[2]
self.out_file = sys.argv[3]
def parse_test_data(self, filename):
with open(filename) as tf:
return tf.read().split()
def test(self, model, test_pairs):
words = []
tags = []
for w, t in test_pairs:
words.append(w)
tags.append(t)
predicted = self.tag_sequence(model, tuple(words))
error = 0
for i in range(len(tags)):
if tags[i] != predicted[i]:
error += 1
return float(error) / len(tags)
def predict(self, model, token_seq):
predicted = self.tag_sequence(model, tuple(token_seq))
tagged = []
for i in range(len(token_seq)):
tagged.append(token_seq[i] + "/" + predicted[i])
return " ".join(tagged)
def tag_sequence(self, model, sequence):
return model.tag(sequence)
if __name__ == "__main__":
test_file = sys.argv[1]
model_file = sys.argv[2]
out_file = sys.argv[3]
rt = RunTagger(test_file, model_file, out_file)
hmm = HMMTagger.HMMTagger(2)
hmm.read_model(model_file)
test_tokens = rt.parse_test_data(test_file)
with open(out_file, "w+") as of:
predicted = rt.predict(hmm, test_tokens)
of.write(predicted)