-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathmain.py
227 lines (208 loc) · 8.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File : main.py
@Time : 2020/03/09
@Author : jhhuang96
@Mail : hjh096@126.com
@Version : 1.0
@Description:
'''
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from encoder import Encoder
from decoder import Decoder
from model import ED
from net_params import convlstm_encoder_params, convlstm_decoder_params, convgru_encoder_params, convgru_decoder_params
from data.mm import MovingMNIST
import torch
from torch import nn
from torch.optim import lr_scheduler
import torch.optim as optim
import sys
from earlystopping import EarlyStopping
from tqdm import tqdm
import numpy as np
from tensorboardX import SummaryWriter
import argparse
TIMESTAMP = "2020-03-09T00-00-00"
parser = argparse.ArgumentParser()
parser.add_argument('-clstm',
'--convlstm',
help='use convlstm as base cell',
action='store_true')
parser.add_argument('-cgru',
'--convgru',
help='use convgru as base cell',
action='store_true')
parser.add_argument('--batch_size',
default=4,
type=int,
help='mini-batch size')
parser.add_argument('-lr', default=1e-4, type=float, help='G learning rate')
parser.add_argument('-frames_input',
default=10,
type=int,
help='sum of input frames')
parser.add_argument('-frames_output',
default=10,
type=int,
help='sum of predict frames')
parser.add_argument('-epochs', default=500, type=int, help='sum of epochs')
args = parser.parse_args()
random_seed = 1996
np.random.seed(random_seed)
torch.manual_seed(random_seed)
if torch.cuda.device_count() > 1:
torch.cuda.manual_seed_all(random_seed)
else:
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
save_dir = './save_model/' + TIMESTAMP
trainFolder = MovingMNIST(is_train=True,
root='data/',
n_frames_input=args.frames_input,
n_frames_output=args.frames_output,
num_objects=[3])
validFolder = MovingMNIST(is_train=False,
root='data/',
n_frames_input=args.frames_input,
n_frames_output=args.frames_output,
num_objects=[3])
trainLoader = torch.utils.data.DataLoader(trainFolder,
batch_size=args.batch_size,
shuffle=False)
validLoader = torch.utils.data.DataLoader(validFolder,
batch_size=args.batch_size,
shuffle=False)
if args.convlstm:
encoder_params = convlstm_encoder_params
decoder_params = convlstm_decoder_params
if args.convgru:
encoder_params = convgru_encoder_params
decoder_params = convgru_decoder_params
else:
encoder_params = convgru_encoder_params
decoder_params = convgru_decoder_params
def train():
'''
main function to run the training
'''
encoder = Encoder(encoder_params[0], encoder_params[1]).cuda()
decoder = Decoder(decoder_params[0], decoder_params[1]).cuda()
net = ED(encoder, decoder)
run_dir = './runs/' + TIMESTAMP
if not os.path.isdir(run_dir):
os.makedirs(run_dir)
tb = SummaryWriter(run_dir)
# initialize the early_stopping object
early_stopping = EarlyStopping(patience=20, verbose=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
net.to(device)
if os.path.exists(os.path.join(save_dir, 'checkpoint.pth.tar')):
# load existing model
print('==> loading existing model')
model_info = torch.load(os.path.join(save_dir, 'checkpoin.pth.tar'))
net.load_state_dict(model_info['state_dict'])
optimizer = torch.optim.Adam(net.parameters())
optimizer.load_state_dict(model_info['optimizer'])
cur_epoch = model_info['epoch'] + 1
else:
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
cur_epoch = 0
lossfunction = nn.MSELoss().cuda()
optimizer = optim.Adam(net.parameters(), lr=args.lr)
pla_lr_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.5,
patience=4,
verbose=True)
# to track the training loss as the model trains
train_losses = []
# to track the validation loss as the model trains
valid_losses = []
# to track the average training loss per epoch as the model trains
avg_train_losses = []
# to track the average validation loss per epoch as the model trains
avg_valid_losses = []
# mini_val_loss = np.inf
for epoch in range(cur_epoch, args.epochs + 1):
###################
# train the model #
###################
t = tqdm(trainLoader, leave=False, total=len(trainLoader))
for i, (idx, targetVar, inputVar, _, _) in enumerate(t):
inputs = inputVar.to(device) # B,S,C,H,W
label = targetVar.to(device) # B,S,C,H,W
optimizer.zero_grad()
net.train()
pred = net(inputs) # B,S,C,H,W
loss = lossfunction(pred, label)
loss_aver = loss.item() / args.batch_size
train_losses.append(loss_aver)
loss.backward()
torch.nn.utils.clip_grad_value_(net.parameters(), clip_value=10.0)
optimizer.step()
t.set_postfix({
'trainloss': '{:.6f}'.format(loss_aver),
'epoch': '{:02d}'.format(epoch)
})
tb.add_scalar('TrainLoss', loss_aver, epoch)
######################
# validate the model #
######################
with torch.no_grad():
net.eval()
t = tqdm(validLoader, leave=False, total=len(validLoader))
for i, (idx, targetVar, inputVar, _, _) in enumerate(t):
if i == 3000:
break
inputs = inputVar.to(device)
label = targetVar.to(device)
pred = net(inputs)
loss = lossfunction(pred, label)
loss_aver = loss.item() / args.batch_size
# record validation loss
valid_losses.append(loss_aver)
#print ("validloss: {:.6f}, epoch : {:02d}".format(loss_aver,epoch),end = '\r', flush=True)
t.set_postfix({
'validloss': '{:.6f}'.format(loss_aver),
'epoch': '{:02d}'.format(epoch)
})
tb.add_scalar('ValidLoss', loss_aver, epoch)
torch.cuda.empty_cache()
# print training/validation statistics
# calculate average loss over an epoch
train_loss = np.average(train_losses)
valid_loss = np.average(valid_losses)
avg_train_losses.append(train_loss)
avg_valid_losses.append(valid_loss)
epoch_len = len(str(args.epochs))
print_msg = (f'[{epoch:>{epoch_len}}/{args.epochs:>{epoch_len}}] ' +
f'train_loss: {train_loss:.6f} ' +
f'valid_loss: {valid_loss:.6f}')
print(print_msg)
# clear lists to track next epoch
train_losses = []
valid_losses = []
pla_lr_scheduler.step(valid_loss) # lr_scheduler
model_dict = {
'epoch': epoch,
'state_dict': net.state_dict(),
'optimizer': optimizer.state_dict()
}
early_stopping(valid_loss.item(), model_dict, epoch, save_dir)
if early_stopping.early_stop:
print("Early stopping")
break
with open("avg_train_losses.txt", 'wt') as f:
for i in avg_train_losses:
print(i, file=f)
with open("avg_valid_losses.txt", 'wt') as f:
for i in avg_valid_losses:
print(i, file=f)
if __name__ == "__main__":
train()