-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathnet_params.py
67 lines (58 loc) · 2.22 KB
/
net_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from collections import OrderedDict
from ConvRNN import CGRU_cell, CLSTM_cell
# build model
# in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]
convlstm_encoder_params = [
[
OrderedDict({'conv1_leaky_1': [1, 16, 3, 1, 1]}),
OrderedDict({'conv2_leaky_1': [64, 64, 3, 2, 1]}),
OrderedDict({'conv3_leaky_1': [96, 96, 3, 2, 1]}),
],
[
CLSTM_cell(shape=(64,64), input_channels=16, filter_size=5, num_features=64),
CLSTM_cell(shape=(32,32), input_channels=64, filter_size=5, num_features=96),
CLSTM_cell(shape=(16,16), input_channels=96, filter_size=5, num_features=96)
]
]
convlstm_decoder_params = [
[
OrderedDict({'deconv1_leaky_1': [96, 96, 4, 2, 1]}),
OrderedDict({'deconv2_leaky_1': [96, 96, 4, 2, 1]}),
OrderedDict({
'conv3_leaky_1': [64, 16, 3, 1, 1],
'conv4_leaky_1': [16, 1, 1, 1, 0]
}),
],
[
CLSTM_cell(shape=(16,16), input_channels=96, filter_size=5, num_features=96),
CLSTM_cell(shape=(32,32), input_channels=96, filter_size=5, num_features=96),
CLSTM_cell(shape=(64,64), input_channels=96, filter_size=5, num_features=64),
]
]
convgru_encoder_params = [
[
OrderedDict({'conv1_leaky_1': [1, 16, 3, 1, 1]}),
OrderedDict({'conv2_leaky_1': [64, 64, 3, 2, 1]}),
OrderedDict({'conv3_leaky_1': [96, 96, 3, 2, 1]}),
],
[
CGRU_cell(shape=(64,64), input_channels=16, filter_size=5, num_features=64),
CGRU_cell(shape=(32,32), input_channels=64, filter_size=5, num_features=96),
CGRU_cell(shape=(16,16), input_channels=96, filter_size=5, num_features=96)
]
]
convgru_decoder_params = [
[
OrderedDict({'deconv1_leaky_1': [96, 96, 4, 2, 1]}),
OrderedDict({'deconv2_leaky_1': [96, 96, 4, 2, 1]}),
OrderedDict({
'conv3_leaky_1': [64, 16, 3, 1, 1],
'conv4_leaky_1': [16, 1, 1, 1, 0]
}),
],
[
CGRU_cell(shape=(16,16), input_channels=96, filter_size=5, num_features=96),
CGRU_cell(shape=(32,32), input_channels=96, filter_size=5, num_features=96),
CGRU_cell(shape=(64,64), input_channels=96, filter_size=5, num_features=64),
]
]