-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathembedding.py
368 lines (333 loc) · 20.1 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# coding: utf-8
import numpy as np
import pandas as pd
import os
import gc
import time
import torch
from models import MLPClassifier
from utils import check_and_make_path, get_neg_edge_samples
# The base class of embedding
class BaseEmbedding:
base_path: str
origin_base_path: str
embedding_base_path: str
model_base_path: str
file_sep: str
full_node_list: list
node_num: int
timestamp_list: list
has_cuda: bool
device: torch.device
def __init__(self, base_path, origin_folder, embedding_folder, node_list, model, loss, model_folder='model', file_sep='\t', has_cuda=False):
# file paths
self.base_path = base_path
self.origin_base_path = os.path.abspath(os.path.join(base_path, origin_folder))
self.embedding_base_path = os.path.abspath(os.path.join(base_path, embedding_folder))
self.model_base_path = os.path.abspath(os.path.join(base_path, model_folder))
self.has_cuda = has_cuda
self.device = torch.device('cuda: 0') if has_cuda else torch.device('cpu')
self.model = model
self.loss = loss
self.file_sep = file_sep
self.full_node_list = node_list
self.node_num = len(self.full_node_list) # node num
self.timestamp_list = sorted(os.listdir(self.origin_base_path))
check_and_make_path(self.embedding_base_path)
check_and_make_path(self.model_base_path)
def clear_cache(self):
if self.has_cuda:
torch.cuda.empty_cache()
else:
gc.collect()
def prepare(self, load_model, model_file, classifier_file=None, lr=1e-3, weight_decay=0.):
classifier = self.classifier if hasattr(self, 'classifier') else None
if load_model:
model_path = os.path.join(self.model_base_path, model_file)
if os.path.exists(model_path):
self.model.load_state_dict(torch.load(os.path.join(self.model_base_path, model_file)))
self.model.eval()
if classifier_file and classifier:
classifier_path = os.path.join(self.model_base_path, classifier_file)
classifier.load_state_dict(torch.load(classifier_path))
classifier.eval()
self.model = self.model.to(self.device)
self.loss = self.loss.to(self.device)
if classifier:
classifier = classifier.to(self.device)
# optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.8, weight_decay=weight_decay)
optimizer = torch.optim.Adam(self.model.parameters(), lr=lr, weight_decay=weight_decay)
optimizer.zero_grad()
return self.model, self.loss, optimizer, classifier
def get_batch_info(self, **kwargs):
pass
def get_model_res(self, **kwargs):
pass
def save_embedding(self, output_list, start_idx):
if isinstance(output_list, torch.Tensor) and len(output_list.size()) == 2: # static embedding
embedding = output_list
output_list = [embedding]
# output_list supports two type: list and torch.Tensor(2d or 3d tensor)
for i in range(len(output_list)):
embedding = output_list[i]
timestamp = self.timestamp_list[start_idx + i].split('.')[0]
df_export = pd.DataFrame(data=embedding.cpu().detach().numpy(), index=self.full_node_list)
embedding_path = os.path.join(self.embedding_base_path, timestamp + '.csv')
df_export.to_csv(embedding_path, sep=self.file_sep, header=True, index=True)
# Supervised embedding class(used for node classification)
class SupervisedEmbedding(BaseEmbedding):
def __init__(self, base_path, origin_folder, embedding_folder, node_list, model, loss, classifier: MLPClassifier, model_folder='model', has_cuda=False):
super(SupervisedEmbedding, self).__init__(base_path, origin_folder, embedding_folder, node_list, model, loss, model_folder=model_folder, has_cuda=has_cuda)
self.classifier = classifier
def get_batch_info(self, learning_type, node_labels, edge_labels, edge_list, batch_size, shuffle, train_ratio, val_ratio, test_ratio):
# consider node classification data / edge classification data
if learning_type in ['S-node', 'S-edge']:
if learning_type == 'S-node':
assert node_labels
timestamp_num = len(node_labels)
device = node_labels[0].device
else:
assert edge_labels
timestamp_num = len(edge_labels)
device = edge_labels[0].device
idx_train, label_train, idx_val, label_val, idx_test, label_test = [], [], [], [], [], []
for i in range(timestamp_num):
if learning_type == 'S-node':
cur_labels = node_labels[i] # tensor
assert cur_labels.shape[1] == 2
else:
cur_labels = edge_labels[i] # tensor
assert cur_labels.shape[1] == 3
item_num = cur_labels.shape[0]
item_indices = torch.arange(item_num, device=device)
train_num = int(np.floor(item_num * train_ratio))
val_num = int(np.floor(item_num * val_ratio))
test_num = int(np.floor(item_num * test_ratio))
train_indices = item_indices[: train_num]
val_indices = item_indices[train_num: train_num + val_num]
test_indices = item_indices[train_num + val_num: train_num + val_num + test_num]
if learning_type == 'S-node':
train_items, train_labels = cur_labels[train_indices, 0], cur_labels[train_indices, 1]
val_items, val_labels = cur_labels[val_indices, 0], cur_labels[val_indices, 1]
test_items, test_labels = cur_labels[test_indices, 0], cur_labels[test_indices, 1]
else:
train_items, train_labels = cur_labels[train_indices, :2].transpose(0, 1), cur_labels[train_indices, 2]
val_items, val_labels = cur_labels[val_indices, :2].transpose(0, 1), cur_labels[val_indices, 2]
test_items, test_labels = cur_labels[test_indices, :2].transpose(0, 1), cur_labels[test_indices, 2]
idx_train.append(train_items)
label_train.append(train_labels)
idx_val.append(val_items)
label_val.append(val_labels)
idx_test.append(test_items)
label_test.append(test_labels)
return idx_train, label_train, idx_val, label_val, idx_test, label_test
# consider link prediction(static or dynamic)
else:
assert edge_list
timestamp_num = len(edge_list)
device = edge_list[0].device
idx_train, label_train, idx_val, label_val, idx_test, label_test = [], [], [], [], [], []
# For dynamic link prediction training, train_edges, val_edges, test_edges start from 1 to timestamp_num - 1
# For dynamic link prediction training, embedding start from [0, -1], then embedding in previous timestamp can predict the current edge label
if learning_type == 'S-link-dy':
start_idx = 1
else: # learning_type == 'S-link-st'
start_idx = 0
for i in range(start_idx, timestamp_num):
cur_edges = edge_list[i]
assert cur_edges.shape[0] == 2
all_edge_num = cur_edges.shape[1]
all_edges = cur_edges.transpose(0, 1).tolist()
all_edge_dict = dict(zip(map(lambda x: tuple(x), all_edges), np.ones(all_edge_num).astype(np.int)))
# remove self-loops
for nid in range(self.node_num):
if (nid, nid) in all_edge_dict:
all_edge_dict.pop((nid, nid))
all_edges = np.array(all_edges)
np.random.shuffle(all_edges)
train_num = int(np.floor(all_edge_num * train_ratio))
val_num = int(np.floor(all_edge_num * val_ratio))
test_num = int(np.floor(all_edge_num * test_ratio))
train_pos_edges = all_edges[: train_num]
train_edges = get_neg_edge_samples(train_pos_edges, train_num, all_edge_dict, self.node_num, add_label=False)
val_pos_edges = all_edges[train_num: train_num + val_num]
val_edges = get_neg_edge_samples(val_pos_edges, val_num, all_edge_dict, self.node_num, add_label=False)
test_pos_edges = all_edges[train_num + val_num: train_num + val_num + test_num]
test_edges = get_neg_edge_samples(test_pos_edges, test_num, all_edge_dict, self.node_num, add_label=False)
train_edges = torch.tensor(train_edges, device=device).transpose(0, 1).long()
train_labels = torch.cat([torch.ones(train_num, device=device), torch.zeros(train_num, device=device)])
val_edges = torch.tensor(val_edges, device=device).transpose(0, 1).long()
val_labels = torch.cat([torch.ones(val_num, device=device), torch.zeros(val_num, device=device)])
test_edges = torch.tensor(test_edges, device=device).transpose(0, 1).long()
test_labels = torch.cat([torch.ones(test_num, device=device), torch.zeros(test_num, device=device)])
idx_train.append(train_edges)
idx_val.append(val_edges)
idx_test.append(test_edges)
label_train.append(train_labels)
label_val.append(val_labels)
label_test.append(test_labels)
return idx_train, label_train, idx_val, label_val, idx_test, label_test
def get_model_res(self, learning_type, adj_list, x_list, edge_list, node_dist_list, batch_indices, model, classifier, hx=None):
structure_list = None
if model.method_name in ['CGCN-S', 'CTGCN-S']:
embedding_list, structure_list = model(x_list, adj_list)
embedding_list = embedding_list[:-1] if learning_type == 'S-link-dy' else embedding_list
cls_list = classifier(embedding_list, batch_indices)
loss_input_list = [cls_list, embedding_list, structure_list]
elif model.method_name == 'VGRNN':
embedding_list, _, loss_data_list = model(x_list, edge_list, hx)
embedding_list = embedding_list[:-1] if learning_type == 'S-link-dy' else embedding_list
cls_list = classifier(embedding_list, batch_indices)
loss_input_list = loss_data_list
loss_input_list.append(adj_list)
loss_input_list.append(cls_list)
elif model.method_name == 'PGNN':
from baseline.pgnn import preselect_anchor
dist_max_list, dist_argmax_list = preselect_anchor(self.node_num, node_dist_list, self.device)
embedding_list = model(x_list, dist_max_list, dist_argmax_list)
embedding_list = embedding_list[:-1] if learning_type == 'S-link-dy' else embedding_list
cls_list = classifier(embedding_list, batch_indices)
loss_input_list = cls_list
# elif model.method_name in ['TgGCN', 'TgGAT', 'TgSAGE', 'TgGIN', 'GCRN']:
elif model.method_name in ['TgGCN', 'TgGAT', 'TgSAGE', 'TgGIN']:
embedding_list = model(x_list, edge_list)
embedding_list = embedding_list[:-1] if learning_type == 'S-link-dy' else embedding_list
cls_list = classifier(embedding_list, batch_indices)
loss_input_list = cls_list
else: # GCN, GAT, SAGE, GIN, CGCN-C, GCRN, EvolveGCN, CTGCN-C
embedding_list = model(x_list, adj_list)
embedding_list = embedding_list[:-1] if learning_type == 'S-link-dy' else embedding_list
cls_list = classifier(embedding_list, batch_indices)
loss_input_list = cls_list
output_list = structure_list if model.method_name in ['CGCN-S', 'CTGCN-S'] else embedding_list
return loss_input_list, output_list, hx
# edge_list parameter is only used by VGRNN, node_dist_list parameter is only used by PGNN
# node_labels parameter is used for node classification, edge_labels parameter is used for edge classification
def learn_embedding(self, adj_list, x_list, node_labels=None, edge_labels=None, edge_list=None, node_dist_list=None, learning_type='S-node', epoch=50, batch_size=1024, lr=1e-3, start_idx=0, weight_decay=0.,
train_ratio=0.5, val_ratio=0.3, test_ratio=0.2, model_file='ctgcn', classifier_file='ctgcn_cls', load_model=False, shuffle=True, export=True):
assert train_ratio + val_ratio + test_ratio <= 1.0
# prepare model, loss model, optimizer and classifier model
model, loss_model, optimizer, classifier = self.prepare(load_model, model_file, classifier_file, lr, weight_decay)
idx_train, label_train, idx_val, label_val, idx_test, label_test = self.get_batch_info(learning_type, node_labels, edge_labels, edge_list, batch_size, shuffle, train_ratio, val_ratio, test_ratio)
self.clear_cache()
# time.sleep(100)
best_acc, best_hx = 0, None
print('start supervised training!')
st = time.time()
model.train()
for i in range(epoch):
hx = None # used for VGRNN
t1 = time.time()
loss_input_list, output_list, hx = self.get_model_res(learning_type, adj_list, x_list, edge_list, node_dist_list, idx_train, model, classifier, hx)
loss_train, acc_train, auc_train = loss_model(loss_input_list, label_train)
loss_train.backward()
optimizer.step() # update gradient
model.zero_grad()
# validation
if i == 0:
print('Epoch: ' + str(i + 1), 'loss_train: {:.4f}'.format(loss_train.item()))
else:
loss_input_list, output_list, hx = self.get_model_res(learning_type, adj_list, x_list, edge_list, node_dist_list, idx_val, model, classifier, hx)
loss_val, acc_val, auc_val = loss_model(loss_input_list, label_val)
print('Epoch: ' + str(i + 1), 'loss_train: {:.4f}'.format(loss_train.item()), 'acc_train: {:.4f}'.format(acc_train.item()), 'auc_train: {:.4f}'.format(auc_train),
'loss_val: {:.4f}'.format(loss_val.item()), 'acc_val: {:.4f}'.format(acc_val.item()), 'auc_val: {:.4f}'.format(auc_val), 'cost time: {:.4f}s'.format(time.time() - t1))
# supervised embedding would always save the model with the best performance
if acc_val > best_acc:
best_acc = acc_val
best_hx = hx
if model_file:
torch.save(model.state_dict(), os.path.join(self.model_base_path, model_file))
if classifier_file:
torch.save(classifier.state_dict(), os.path.join(self.model_base_path, classifier_file))
self.clear_cache()
print('finish supervised training!')
# load embedding model and classifier model
if model_file:
model.load_state_dict(torch.load(os.path.join(self.model_base_path, model_file)))
model.eval()
if classifier_file:
classifier.load_state_dict(torch.load(os.path.join(self.model_base_path, classifier_file)))
classifier.eval()
print('start model evaluation!')
loss_input_list, output_list, _ = self.get_model_res(learning_type, adj_list, x_list, edge_list, node_dist_list, idx_test, model, classifier, best_hx)
loss_test, acc_test, auc_test = loss_model(loss_input_list, label_test)
print('Test set results:', 'loss= {:.4f}'.format(loss_test.item()), 'accuracy= {:.4f}'.format(acc_test.item()), 'auc= {:.4f}'.format(auc_test.item()))
print('finish model evaluation!')
en = time.time()
cost_time = en - st
if export:
self.save_embedding(output_list, start_idx)
del adj_list, x_list, output_list, model
self.clear_cache()
print('training total time: ', cost_time, ' seconds!')
return cost_time
# Unsupervised embedding class
class UnsupervisedEmbedding(BaseEmbedding):
def __init__(self, base_path, origin_folder, embedding_folder, node_list, model, loss, model_folder='model', has_cuda=False):
super(UnsupervisedEmbedding, self).__init__(base_path, origin_folder, embedding_folder, node_list, model, loss, model_folder=model_folder, has_cuda=has_cuda)
def get_model_res(self, adj_list, x_list, edge_list, node_dist_list, model, batch_indices, hx):
structure_list = None
if model.method_name in ['CGCN-S', 'CTGCN-S']:
embedding_list, structure_list = model(x_list, adj_list)
loss_input_list = [embedding_list, structure_list, batch_indices]
elif model.method_name == 'VGRNN':
embedding_list, hx, loss_data_list = model(x_list, edge_list, hx)
loss_input_list = loss_data_list
loss_input_list.append(adj_list)
elif model.method_name == 'PGNN':
from baseline.pgnn import preselect_anchor
dist_max_list, dist_argmax_list = preselect_anchor(self.node_num, node_dist_list, self.device)
embedding_list = model(x_list, dist_max_list, dist_argmax_list)
loss_input_list = [embedding_list, batch_indices]
# elif model.method_name in ['TgGCN', 'TgGAT', 'TgSAGE', 'TgGIN', 'GCRN']:
elif model.method_name in ['TgGCN', 'TgGAT', 'TgSAGE', 'TgGIN']:
embedding_list = model(x_list, edge_list)
loss_input_list = [embedding_list, batch_indices]
else: # GCN, GAT, SAGE, GIN, CGCN-C, GCRN, EvolveGCN, CTGCN-C
embedding_list = model(x_list, adj_list)
loss_input_list = [embedding_list, batch_indices]
output_list = structure_list if model.method_name in ['CGCN-S', 'CTGCN-S'] else embedding_list
return loss_input_list, output_list, hx
def get_batch_info(self, batch_size):
batch_num = self.node_num // batch_size
if self.node_num % batch_size != 0:
batch_num += 1
return batch_num
# edge_list parameter is only used by VGRNN, node_dist_list parameter is only used by PGNN
def learn_embedding(self, adj_list, x_list, edge_list=None, node_dist_list=None, epoch=50, batch_size=1024, lr=1e-3, start_idx=0, weight_decay=0., model_file='ctgcn', load_model=False, shuffle=True, export=True):
print('start learning embedding!')
model, loss_model, optimizer, _ = self.prepare(load_model, model_file, lr=lr, weight_decay=weight_decay)
batch_num = self.get_batch_info(batch_size)
all_nodes = torch.arange(self.node_num, device=self.device)
output_list = []
st = time.time()
print('start unsupervised training!')
model.train()
for i in range(epoch):
node_indices = all_nodes[torch.randperm(self.node_num)] if shuffle else all_nodes # Tensor
hx = None # used for VGRNN
for j in range(batch_num):
batch_indices = node_indices[j * batch_size: min(self.node_num, (j + 1) * batch_size)]
t1 = time.time()
loss_input_list, output_list, hx = self.get_model_res(adj_list, x_list, edge_list, node_dist_list, model, batch_indices, hx)
loss = loss_model(loss_input_list)
loss.backward()
# gradient accumulation
if j == batch_num - 1:
optimizer.step() # update gradient
model.zero_grad()
t2 = time.time()
self.clear_cache()
print('epoch', i + 1, ', batch num = ', j + 1, ', loss:', loss.item(), ', cost time: ', t2 - t1, ' seconds!')
print('end unsupervised training!')
en = time.time()
cost_time = en - st
if export:
self.save_embedding(output_list, start_idx)
# if model_file is None, then the model would not be saved
if model_file:
torch.save(model.state_dict(), os.path.join(self.model_base_path, model_file))
del adj_list, x_list, output_list, model
self.clear_cache()
print('learning embedding total time: ', cost_time, ' seconds!')
return cost_time