-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathlayers.py
260 lines (229 loc) · 11.2 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
# Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neural Network.
# For more information, please refer to https://dl.acm.org/doi/10.1145/3350546.3352513
# Author: jhljx
# Email: jhljx8918@gmail.com
# Multi-Layer Perceptron(MLP) layer
class MLP(nn.Module):
"""Two-layer fully-connected ReLU net with batch norm."""
def __init__(self, input_dim, hidden_dim, output_dim, dropout=0., bias=True):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
self.fc2 = nn.Linear(hidden_dim, output_dim, bias=bias)
self.norm = nn.BatchNorm1d(output_dim)
# the paper said they added Batch Normalization for the output of MLPs, as shown in Section 4.2
self.dropout = dropout
self.output_dim = output_dim
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.1)
elif isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def batch_norm(self, inputs):
if inputs.numel() == self.output_dim or inputs.numel() == 0:
# batch_size == 1 or 0 will cause BatchNorm error, so return the input directly
return inputs
if len(inputs.size()) == 3:
x = inputs.view(inputs.size(0) * inputs.size(1), -1)
x = self.norm(x)
return x.view(inputs.size(0), inputs.size(1), -1)
else: # len(input_size()) == 2
return self.norm(inputs)
def forward(self, inputs):
x = F.relu(self.fc1(inputs))
x = F.dropout(x, self.dropout, training=self.training) # pay attention to add training=self.training
x = F.relu(self.fc2(x))
return self.batch_norm(x)
class EraseAddGate(nn.Module):
"""
Erase & Add Gate module
NOTE: this erase & add gate is a bit different from that in DKVMN.
For more information about Erase & Add gate, please refer to the paper "Dynamic Key-Value Memory Networks for Knowledge Tracing"
The paper can be found in https://arxiv.org/abs/1611.08108
"""
def __init__(self, feature_dim, concept_num, bias=True):
super(EraseAddGate, self).__init__()
# weight
self.weight = nn.Parameter(torch.rand(concept_num))
self.reset_parameters()
# erase gate
self.erase = nn.Linear(feature_dim, feature_dim, bias=bias)
# add gate
self.add = nn.Linear(feature_dim, feature_dim, bias=bias)
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(0))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, x):
r"""
Params:
x: input feature matrix
Shape:
x: [batch_size, concept_num, feature_dim]
res: [batch_size, concept_num, feature_dim]
Return:
res: returned feature matrix with old information erased and new information added
The GKT paper didn't provide detailed explanation about this erase-add gate. As the erase-add gate in the GKT only has one input parameter,
this gate is different with that of the DKVMN. We used the input matrix to build the erase and add gates, rather than $\mathbf{v}_{t}$ vector in the DKVMN.
"""
erase_gate = torch.sigmoid(self.erase(x)) # [batch_size, concept_num, feature_dim]
# self.weight.unsqueeze(dim=1) shape: [concept_num, 1]
tmp_x = x - self.weight.unsqueeze(dim=1) * erase_gate * x
add_feat = torch.tanh(self.add(x)) # [batch_size, concept_num, feature_dim]
res = tmp_x + self.weight.unsqueeze(dim=1) * add_feat
return res
class ScaledDotProductAttention(nn.Module):
"""
Scaled Dot-Product Attention
NOTE: Stole and modify from https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Modules.py
"""
def __init__(self, temperature, attn_dropout=0.):
super().__init__()
self.temperature = temperature
self.dropout = attn_dropout
def forward(self, q, k, mask=None):
r"""
Parameters:
q: multi-head query matrix
k: multi-head key matrix
mask: mask matrix
Shape:
q: [n_head, mask_num, embedding_dim]
k: [n_head, concept_num, embedding_dim]
Return: attention score of all queries
"""
attn = torch.matmul(q / self.temperature, k.transpose(1, 2)) # [n_head, mask_number, concept_num]
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
# pay attention to add training=self.training!
attn = F.dropout(F.softmax(attn, dim=0), self.dropout, training=self.training) # pay attention that dim=-1 is not as good as dim=0!
return attn
class MLPEncoder(nn.Module):
"""
MLP encoder module.
NOTE: Stole and modify the code from https://github.com/ethanfetaya/NRI/blob/master/modules.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, factor=True, dropout=0., bias=True):
super(MLPEncoder, self).__init__()
self.factor = factor
self.mlp = MLP(input_dim * 2, hidden_dim, hidden_dim, dropout=dropout, bias=bias)
self.mlp2 = MLP(hidden_dim, hidden_dim, hidden_dim, dropout=dropout, bias=bias)
if self.factor:
self.mlp3 = MLP(hidden_dim * 3, hidden_dim, hidden_dim, dropout=dropout, bias=bias)
else:
self.mlp3 = MLP(hidden_dim * 2, hidden_dim, hidden_dim, dropout=dropout, bias=bias)
self.fc_out = nn.Linear(hidden_dim, output_dim)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight.data)
m.bias.data.fill_(0.1)
def node2edge(self, x, sp_send, sp_rec):
# NOTE: Assumes that we have the same graph across all samples.
receivers = torch.matmul(sp_rec, x)
senders = torch.matmul(sp_send, x)
edges = torch.cat([senders, receivers], dim=1)
return edges
def edge2node(self, x, sp_send_t, sp_rec_t):
# NOTE: Assumes that we have the same graph across all samples.
incoming = torch.matmul(sp_rec_t, x)
return incoming
def forward(self, inputs, sp_send, sp_rec, sp_send_t, sp_rec_t):
r"""
Parameters:
inputs: input concept embedding matrix
sp_send: one-hot encoded send-node index(sparse tensor)
sp_rec: one-hot encoded receive-node index(sparse tensor)
sp_send_t: one-hot encoded send-node index(sparse tensor, transpose)
sp_rec_t: one-hot encoded receive-node index(sparse tensor, transpose)
Shape:
inputs: [concept_num, embedding_dim]
sp_send: [edge_num, concept_num]
sp_rec: [edge_num, concept_num]
sp_send_t: [concept_num, edge_num]
sp_rec_t: [concept_num, edge_num]
Return:
output: [edge_num, edge_type_num]
"""
x = self.node2edge(inputs, sp_send, sp_rec) # [edge_num, 2 * embedding_dim]
x = self.mlp(x) # [edge_num, hidden_num]
x_skip = x
if self.factor:
x = self.edge2node(x, sp_send_t, sp_rec_t) # [concept_num, hidden_num]
x = self.mlp2(x) # [concept_num, hidden_num]
x = self.node2edge(x, sp_send, sp_rec) # [edge_num, 2 * hidden_num]
x = torch.cat((x, x_skip), dim=1) # Skip connection shape: [edge_num, 3 * hidden_num]
x = self.mlp3(x) # [edge_num, hidden_num]
else:
x = self.mlp2(x) # [edge_num, hidden_num]
x = torch.cat((x, x_skip), dim=1) # Skip connection shape: [edge_num, 2 * hidden_num]
x = self.mlp3(x) # [edge_num, hidden_num]
output = self.fc_out(x) # [edge_num, output_dim]
return output
class MLPDecoder(nn.Module):
"""
MLP decoder module.
NOTE: Stole and modify the code from https://github.com/ethanfetaya/NRI/blob/master/modules.py
"""
def __init__(self, input_dim, msg_hidden_dim, msg_output_dim, hidden_dim, edge_type_num, dropout=0., bias=True):
super(MLPDecoder, self).__init__()
self.msg_out_dim = msg_output_dim
self.edge_type_num = edge_type_num
self.dropout = dropout
self.msg_fc1 = nn.ModuleList([nn.Linear(2 * input_dim, msg_hidden_dim, bias=bias) for _ in range(edge_type_num)])
self.msg_fc2 = nn.ModuleList([nn.Linear(msg_hidden_dim, msg_output_dim, bias=bias) for _ in range(edge_type_num)])
self.out_fc1 = nn.Linear(msg_output_dim, hidden_dim, bias=bias)
self.out_fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.out_fc3 = nn.Linear(hidden_dim, input_dim, bias=bias)
def node2edge(self, x, sp_send, sp_rec):
receivers = torch.matmul(sp_rec, x) # [edge_num, embedding_dim]
senders = torch.matmul(sp_send, x) # [edge_num, embedding_dim]
edges = torch.cat([senders, receivers], dim=-1) # [edge_num, 2 * embedding_dim]
return edges
def edge2node(self, x, sp_send_t, sp_rec_t):
# NOTE: Assumes that we have the same graph across all samples.
incoming = torch.matmul(sp_rec_t, x)
return incoming
def forward(self, inputs, rel_type, sp_send, sp_rec, sp_send_t, sp_rec_t):
r"""
Parameters:
inputs: input concept embedding matrix
rel_type: inferred edge weights for all edge types from MLPEncoder
sp_send: one-hot encoded send-node index(sparse tensor)
sp_rec: one-hot encoded receive-node index(sparse tensor)
sp_send_t: one-hot encoded send-node index(sparse tensor, transpose)
sp_rec_t: one-hot encoded receive-node index(sparse tensor, transpose)
Shape:
inputs: [concept_num, embedding_dim]
sp_send: [edge_num, concept_num]
sp_rec: [edge_num, concept_num]
sp_send_t: [concept_num, edge_num]
sp_rec_t: [concept_num, edge_num]
Return:
output: [edge_num, edge_type_num]
"""
# NOTE: Assumes that we have the same graph across all samples.
# Node2edge
pre_msg = self.node2edge(inputs, sp_send, sp_rec)
all_msgs = Variable(torch.zeros(pre_msg.size(0), self.msg_out_dim, device=inputs.device)) # [edge_num, msg_out_dim]
for i in range(self.edge_type_num):
msg = F.relu(self.msg_fc1[i](pre_msg))
msg = F.dropout(msg, self.dropout, training=self.training)
msg = F.relu(self.msg_fc2[i](msg))
msg = msg * rel_type[:, i:i + 1]
all_msgs += msg
# Aggregate all msgs to receiver
agg_msgs = self.edge2node(all_msgs, sp_send_t, sp_rec_t) # [concept_num, msg_out_dim]
# Output MLP
pred = F.dropout(F.relu(self.out_fc1(agg_msgs)), self.dropout, training=self.training) # [concept_num, hidden_dim]
pred = F.dropout(F.relu(self.out_fc2(pred)), self.dropout, training=self.training) # [concept_num, hidden_dim]
pred = self.out_fc3(pred) # [concept_num, embedding_dim]
return pred