-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path4medianOfTwoSortedArraysB.cs
112 lines (97 loc) · 3.86 KB
/
4medianOfTwoSortedArraysB.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace medianOfTwoSortedArrays
{
class Program
{
/**
* Latest update: June 24, 2015
* Leetcode: median of two sorted arrays
* http://articles.leetcode.com/2011/01/find-k-th-smallest-element-in-union-of.html
* Action Items:
* 1. implement the naive solution: O(m+n) using C#
* 2. implement the better solution: O(k) using C#
* 3. implement the best soluton: O(lg m + lg n) using C# (completed on June 24, 2015)
*
* convert C++ code to C#
* read the article and understand the difference between C++ and C#
* https://msdn.microsoft.com/en-us/library/yyaad03b(v=vs.90).aspx
*
*/
static void Main(string[] args)
{
/* test case 1:
* array 1: 1, 3, 5, 7, 9
* array 2: 2, 4, 5, 8, 10
* so the median is the median of the sorted array 1, 2, 3, 4, 5, 5, 7, 8, 9, 10
* median of the above array is (5+5)/2 = 5
*/
int[] a = new int[]{ 1, 3, 5, 7, 9 };
int[] b = new int[]{ 2, 4, 5, 8, 10};
int median1 = findMedianSortedArray(a,5,b,5);
/* test case 2:
* array 1: 1, 3, 5, 7, 9
* array 2: 2, 4, 6, 8
* actually it is the median of the sorted array: 1, 2, 3, 4, 5, 6, 7, 8, 9
* median of the above sorted array is: 5
*
*/
int[] a2 = new int[]{ 1, 3, 5, 7, 9 };
int[] b2 = new int[]{ 2, 4, 6, 8 };
int median2 = findMedianSortedArray(a2, 5, b2, 4);
}
/**
* Leetcode: median of two sorted arrays
* best solution: O(lg m+lg n)
* http://articles.leetcode.com/2011/01/find-k-th-smallest-element-in-union-of.html
*/
public static int findMedianSortedArray(int[] A, int m, int[] B, int n)
{
int total = m + n;
// total is odd
if (total % 2 == 1)
{
return find_kth(A, m, B, n, total / 2 + 1);
}
else
{
int v1 = find_kth(A, m, B, n, total / 2);
int v2 = find_kth(A, m, B, n, total / 2 + 1);
double value = (v1+v2)/2.0;
return Convert.ToInt32(value);
}
}
// take advantage two sorted array,
// using binary partition to reduce the algorithm to log(m+n)
protected static int find_kth(int[] A, int m, int[] B, int n, int k){
// always assume that m is equal or smaller than n
if (m > n) return find_kth(B, n, A, m, k);
if (m == 0) return B[k - 1]; // the kth number in B
if (k == 1) return (Math.Min(A[0], B[0]));
// divide k into two parts
int ia = Math.Min(k / 2, m),
ib = k - ia;
// proof that those first ia elements in array A must be included.
if (A[ia - 1] < B[ib - 1])
{
// julia comment: on June 24, 2015 first time use Array.Copy method
// C++ A+ia, but C# takes more time to figure out
int[] AA = new int[A.Length-ia];
Array.Copy(A, ia,AA,0,AA.Length);
return find_kth(AA, m - ia, B, n, k - ia);
}
// proof that those first ib elements in array B must be included.
else if (A[ia - 1] > B[ib - 1])
{
int[] BB = new int[B.Length -ib];
Array.Copy(B, ib, BB, 0, BB.Length);
return find_kth(A, m, BB, n - ib, k - ib);
}
else
return A[ia - 1];
}
}
}