Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error while training with checkpoint #16

Open
ShafinH opened this issue Dec 29, 2021 · 2 comments
Open

Error while training with checkpoint #16

ShafinH opened this issue Dec 29, 2021 · 2 comments

Comments

@ShafinH
Copy link

ShafinH commented Dec 29, 2021

File "train.py", line 266, in <module> main() File "train.py", line 151, in main args.reload_path, map_location=torch.device('cpu'))) File "C:\Users\shafi\AppData\Local\Programs\Python\Python37\lib\site-packages\torch\nn\modules\module.py", line 1407, in load_state_dict self.__class__.__name__, "\n\t".join(error_msgs))) RuntimeError: Error(s) in loading state_dict for unet3D: Missing key(s) in state_dict: "conv1.weight", "layer0.0.gn1.weight", "layer0.0.gn1.bias", "layer0.0.conv1.weight", "layer0.0.gn2.weight", "layer0.0.gn2.bias", "layer0.0.conv2.weight", "layer1.0.gn1.weight", "layer1.0.gn1.bias", "layer1.0.conv1.weight", "layer1.0.gn2.weight", "layer1.0.gn2.bias", "layer1.0.conv2.weight", "layer1.0.downsample.0.weight", "layer1.0.downsample.0.bias", "layer1.0.downsample.2.weight", "layer1.1.gn1.weight", "layer1.1.gn1.bias", "layer1.1.conv1.weight", "layer1.1.gn2.weight", "layer1.1.gn2.bias", "layer1.1.conv2.weight", "layer2.0.gn1.weight", "layer2.0.gn1.bias", "layer2.0.conv1.weight", "layer2.0.gn2.weight", "layer2.0.gn2.bias", "layer2.0.conv2.weight", "layer2.0.downsample.0.weight", "layer2.0.downsample.0.bias", "layer2.0.downsample.2.weight", "layer2.1.gn1.weight", "layer2.1.gn1.bias", "layer2.1.conv1.weight", "layer2.1.gn2.weight", "layer2.1.gn2.bias", "layer2.1.conv2.weight", "layer3.0.gn1.weight", "layer3.0.gn1.bias", "layer3.0.conv1.weight", "layer3.0.gn2.weight", "layer3.0.gn2.bias", "layer3.0.conv2.weight", "layer3.0.downsample.0.weight", "layer3.0.downsample.0.bias", "layer3.0.downsample.2.weight", "layer3.1.gn1.weight", "layer3.1.gn1.bias", "layer3.1.conv1.weight", "layer3.1.gn2.weight", "layer3.1.gn2.bias", "layer3.1.conv2.weight", "layer4.0.gn1.weight", "layer4.0.gn1.bias", "layer4.0.conv1.weight", "layer4.0.gn2.weight", "layer4.0.gn2.bias", "layer4.0.conv2.weight", "layer4.0.downsample.0.weight", "layer4.0.downsample.0.bias", "layer4.0.downsample.2.weight", "layer4.1.gn1.weight", "layer4.1.gn1.bias", "layer4.1.conv1.weight", "layer4.1.gn2.weight", "layer4.1.gn2.bias", "layer4.1.conv2.weight", "fusionConv.0.weight", "fusionConv.0.bias", "fusionConv.2.weight", "x8_resb.0.gn1.weight", "x8_resb.0.gn1.bias", "x8_resb.0.conv1.weight", "x8_resb.0.gn2.weight", "x8_resb.0.gn2.bias", "x8_resb.0.conv2.weight", "x8_resb.0.downsample.0.weight", "x8_resb.0.downsample.0.bias", "x8_resb.0.downsample.2.weight", "x4_resb.0.gn1.weight", "x4_resb.0.gn1.bias", "x4_resb.0.conv1.weight", "x4_resb.0.gn2.weight", "x4_resb.0.gn2.bias", "x4_resb.0.conv2.weight", "x4_resb.0.downsample.0.weight", "x4_resb.0.downsample.0.bias", "x4_resb.0.downsample.2.weight", "x2_resb.0.gn1.weight", "x2_resb.0.gn1.bias", "x2_resb.0.conv1.weight", "x2_resb.0.gn2.weight", "x2_resb.0.gn2.bias", "x2_resb.0.conv2.weight", "x2_resb.0.downsample.0.weight", "x2_resb.0.downsample.0.bias", "x2_resb.0.downsample.2.weight", "x1_resb.0.gn1.weight", "x1_resb.0.gn1.bias", "x1_resb.0.conv1.weight", "x1_resb.0.gn2.weight", "x1_resb.0.gn2.bias", "x1_resb.0.conv2.weight", "precls_conv.0.weight", "precls_conv.0.bias", "precls_conv.2.weight", "precls_conv.2.bias", "GAP.0.weight", "GAP.0.bias", "controller.weight", "controller.bias". Unexpected key(s) in state_dict: "module.conv1.weight", "module.layer0.0.gn1.weight", "module.layer0.0.gn1.bias", "module.layer0.0.conv1.weight", "module.layer0.0.gn2.weight", "module.layer0.0.gn2.bias", "module.layer0.0.conv2.weight", "module.layer1.0.gn1.weight", "module.layer1.0.gn1.bias", "module.layer1.0.conv1.weight", "module.layer1.0.gn2.weight", "module.layer1.0.gn2.bias", "module.layer1.0.conv2.weight", "module.layer1.0.downsample.0.weight", "module.layer1.0.downsample.0.bias", "module.layer1.0.downsample.2.weight", "module.layer1.1.gn1.weight", "module.layer1.1.gn1.bias", "module.layer1.1.conv1.weight", "module.layer1.1.gn2.weight", "module.layer1.1.gn2.bias", "module.layer1.1.conv2.weight", "module.layer2.0.gn1.weight", "module.layer2.0.gn1.bias", "module.layer2.0.conv1.weight", "module.layer2.0.gn2.weight", "module.layer2.0.gn2.bias", "module.layer2.0.conv2.weight", "module.layer2.0.downsample.0.weight", "module.layer2.0.downsample.0.bias", "module.layer2.0.downsample.2.weight", "module.layer2.1.gn1.weight", "module.layer2.1.gn1.bias", "module.layer2.1.conv1.weight", "module.layer2.1.gn2.weight", "module.layer2.1.gn2.bias", "module.layer2.1.conv2.weight", "module.layer3.0.gn1.weight", "module.layer3.0.gn1.bias", "module.layer3.0.conv1.weight", "module.layer3.0.gn2.weight", "module.layer3.0.gn2.bias", "module.layer3.0.conv2.weight", "module.layer3.0.downsample.0.weight", "module.layer3.0.downsample.0.bias", "module.layer3.0.downsample.2.weight", "module.layer3.1.gn1.weight", "module.layer3.1.gn1.bias", "module.layer3.1.conv1.weight", "module.layer3.1.gn2.weight", "module.layer3.1.gn2.bias", "module.layer3.1.conv2.weight", "module.layer4.0.gn1.weight", "module.layer4.0.gn1.bias", "module.layer4.0.conv1.weight", "module.layer4.0.gn2.weight", "module.layer4.0.gn2.bias", "module.layer4.0.conv2.weight", "module.layer4.0.downsample.0.weight", "module.layer4.0.downsample.0.bias", "module.layer4.0.downsample.2.weight", "module.layer4.1.gn1.weight", "module.layer4.1.gn1.bias", "module.layer4.1.conv1.weight", "module.layer4.1.gn2.weight", "module.layer4.1.gn2.bias", "module.layer4.1.conv2.weight", "module.fusionConv.0.weight", "module.fusionConv.0.bias", "module.fusionConv.2.weight", "module.x8_resb.0.gn1.weight", "module.x8_resb.0.gn1.bias", "module.x8_resb.0.conv1.weight", "module.x8_resb.0.gn2.weight", "module.x8_resb.0.gn2.bias", "module.x8_resb.0.conv2.weight", "module.x8_resb.0.downsample.0.weight", "module.x8_resb.0.downsample.0.bias", "module.x8_resb.0.downsample.2.weight", "module.x4_resb.0.gn1.weight", "module.x4_resb.0.gn1.bias", "module.x4_resb.0.conv1.weight", "module.x4_resb.0.gn2.weight", "module.x4_resb.0.gn2.bias", "module.x4_resb.0.conv2.weight", "module.x4_resb.0.downsample.0.weight", "module.x4_resb.0.downsample.0.bias", "module.x4_resb.0.downsample.2.weight", "module.x2_resb.0.gn1.weight", "module.x2_resb.0.gn1.bias", "module.x2_resb.0.conv1.weight", "module.x2_resb.0.gn2.weight", "module.x2_resb.0.gn2.bias", "module.x2_resb.0.conv2.weight", "module.x2_resb.0.downsample.0.weight", "module.x2_resb.0.downsample.0.bias", "module.x2_resb.0.downsample.2.weight", "module.x1_resb.0.gn1.weight", "module.x1_resb.0.gn1.bias", "module.x1_resb.0.conv1.weight", "module.x1_resb.0.gn2.weight", "module.x1_resb.0.gn2.bias", "module.x1_resb.0.conv2.weight", "module.precls_conv.0.weight", "module.precls_conv.0.bias", "module.precls_conv.2.weight", "module.precls_conv.2.bias", "module.GAP.0.weight", "module.GAP.0.bias", "module.controller.weight", "module.controller.bias".

@Terry-2019
Copy link

This error is: the GPU model runs on the CPU, so if you run on the GPU, no error is reported

@ShafinH
Copy link
Author

ShafinH commented Jan 15, 2022

But the original code loads it on the CPU so shouldn't that be right?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants