-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
335 lines (278 loc) · 13.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
import scipy
from scipy import ndimage
import cv2
import numpy as np
import sys
import json
import torch
from torch.autograd import Variable
import torchvision.models as models
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils import data
# from networks.unet2D import UNet
from networks.efficient import EfficientSegBackbone
from dataset.MyoPSDataset import MyoPSDataSet, MyoPSDataSetVal
from collections import OrderedDict
import os
import scipy.ndimage as nd
from math import ceil
from PIL import Image as PILImage
import nibabel as nib
from utils.ParaFlop import print_model_parm_nums, print_model_parm_flops, torch_summarize_df
import matplotlib.pyplot as plt
# from utils.encoding import DataParallelModel, DataParallelCriterion
import torch.nn as nn
from engine import Engine
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="W-like Network for 3D Medical Image Segmentation.")
# paths
parser.add_argument("--data_dir", type=str, default='dataset/')
parser.add_argument("--val_list", type=str, default='list/MyoPS2020/val5f_5.txt')
parser.add_argument("--output_path", type=str, default='output/MyoPS2020/tmp/')
parser.add_argument("--restore_from", type=str, default='snapshots/MyoPS2020/all_r1_EB3_4GPU_bs32_FP16/MyoPS2020_all_r1_EB3_4GPU_bs32_FP16_final.pth')
# training details
parser.add_argument("--input_size", type=str, default='288,288')
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--num_gpus", type=int, default=1)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument("--FP16", type=bool, default=False)
parser.add_argument("--num_epochs", type=int, default=500)
parser.add_argument("--patience", type=int, default=3)
parser.add_argument("--start_epoch", type=int, default=0)
parser.add_argument("--save_pred_every", type=int, default=10)
parser.add_argument("--learning_rate", type=float, default=1e-3)
parser.add_argument("--num_classes", type=int, default=5 + 1)
parser.add_argument("--compound_coef", type=int, default=3) # B0-B7
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--weight_std", type=bool, default=True)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--power", type=float, default=0.9)
parser.add_argument("--weight_decay", type=float, default=0.0005)
parser.add_argument("--ignore_label", type=int, default=255)
parser.add_argument("--is_training", action="store_true")
parser.add_argument("--not_restore_last", action="store_true")
parser.add_argument("--save_num_images", type=int, default=2)
# data aug.
parser.add_argument("--random_mirror", type=bool, default=True, )
parser.add_argument("--random_scale", type=bool, default=True)
parser.add_argument("--random_seed", type=int, default=1234)
# others
parser.add_argument("--gpu", type=str, default='None')
parser.add_argument("--recurrence", type=int, default=1)
parser.add_argument("--ft", type=bool, default=False)
return parser
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def pad_image(img, target_size):
"""Pad an image up to the target size."""
deps_missing = target_size[0] - img.shape[2]
rows_missing = target_size[1] - img.shape[3]
cols_missing = target_size[2] - img.shape[4]
padded_img = np.pad(img, ((0, 0), (0, 0),(0, deps_missing), (0, rows_missing), (0, cols_missing)), 'constant')
return padded_img
def multi_net(net_list, img):
img = torch.from_numpy(img).cuda()
padded_prediction = net_list[0](img)
padded_prediction = torch.softmax(padded_prediction, 1)
for i in range(1, len(net_list)):
padded_prediction_i = net_list[i](img)
padded_prediction_i = torch.softmax(padded_prediction_i, 1)
padded_prediction += padded_prediction_i
padded_prediction /= len(net_list)
return padded_prediction.cpu().numpy()
# for 2D
def predict_sliding(net, image, tile_size, classes): # image: 1,3,5,256,256, tile_size:256x256
image_size = image.shape
overlap = 1 / 3
strideHW = ceil(tile_size[0] * (1 - overlap))
tile_rows = int(ceil((image_size[3] - tile_size[0]) / strideHW) + 1) # strided convolution formula
tile_cols = int(ceil((image_size[4] - tile_size[1]) / strideHW) + 1)
# print("Need %i x %i x %i prediction tiles @ stride %i x %i px" % (tile_deps, tile_cols, tile_rows, strideD, strideHW))
full_probs = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32) # 1x4x155x240x240
count_predictions = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32)
full_probs = torch.from_numpy(full_probs).cuda()
count_predictions = torch.from_numpy(count_predictions).cuda()
tile_counter = 0
for dep in range(image_size[2]):
for row in range(tile_rows):
for col in range(tile_cols):
x1 = int(col * strideHW)
y1 = int(row * strideHW)
x2 = min(x1 + tile_size[1], image_size[4])
y2 = min(y1 + tile_size[0], image_size[3])
x1 = max(int(x2 - tile_size[1]), 0) # for portrait images the x1 underflows sometimes
y1 = max(int(y2 - tile_size[0]), 0) # for very few rows y1 underflows
d1 = dep
d2 = dep+1
img = torch.squeeze(image[:, :, d1:d2, y1:y2, x1:x2], 2)
img = img.numpy()
tile_counter += 1
prediction1 = multi_net([net], img)
prediction2 = multi_net([net], img[:, :, :, ::-1].copy())[:, :, :, ::-1]
prediction3 = multi_net([net], img[:, :, ::-1, :].copy())[:, :, ::-1, :]
prediction = (prediction1 + prediction2 + prediction3) / 3.
prediction = torch.unsqueeze(torch.from_numpy(prediction).cuda(), 2)
if isinstance(prediction, list):
shape = np.array(prediction[0].shape)
shape[0] = prediction[0].shape[0] * len(prediction)
shape = tuple(shape)
preds = torch.zeros(shape).cuda()
bs_singlegpu = prediction[0].shape[0]
for i in range(len(prediction)):
preds[i * bs_singlegpu: (i + 1) * bs_singlegpu] = prediction[i]
count_predictions[:, :, d1:d2, y1:y2, x1:x2] += 1
full_probs[:, :, d1:d2, y1:y2, x1:x2] += preds
else:
count_predictions[:, :, d1:d2, y1:y2, x1:x2] += 1
full_probs[:, :, d1:d2, y1:y2, x1:x2] += prediction
# average the predictions in the overlapping regions
full_probs /= count_predictions
return full_probs.cpu().data.numpy()
def get_confusion_matrix(gt_label, pred_label, class_num):
"""
Calcute the confusion matrix by given label and pred
:param gt_label: the ground truth label
:param pred_label: the pred label
:param class_num: the nunber of class
:return: the confusion matrix
"""
index = (gt_label * class_num + pred_label).astype('int32')
label_count = np.bincount(index)
confusion_matrix = np.zeros((class_num, class_num))
for i_label in range(class_num):
for i_pred_label in range(class_num):
cur_index = i_label * class_num + i_pred_label
if cur_index < len(label_count):
confusion_matrix[i_label, i_pred_label] = label_count[cur_index]
return confusion_matrix
def dice_score(preds, labels):
assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match"
predict = preds.view().reshape(preds.shape[0], -1)
target = labels.view().reshape(labels.shape[0], -1)
num = np.sum(np.multiply(predict, target), axis=1)
den = np.sum(predict, axis=1) + np.sum(target, axis=1) +1
dice = 2*num / den
return dice.mean()
def main():
"""Create the model and start the evaluation process."""
parser= get_arguments()
#os.environ["CUDA_VISIBLE_DEVICES"] = '0'
with Engine(custom_parser=parser) as engine:
args = parser.parse_args()
torch.cuda.set_device(args.local_rank)
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
cudnn.benchmark = True
seed = args.random_seed
if engine.distributed:
seed = args.local_rank
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
model = EfficientSegBackbone(num_classes=args.num_classes, compound_coef=args.compound_coef, load_weights=True)
print_model_parm_nums(model)
# print_model_parm_flops(model)
# model = nn.DataParallel(model)
print('loading from checkpoint: {}'.format(args.restore_from))
if os.path.exists(args.restore_from):
model.load_state_dict(torch.load(args.restore_from, map_location=torch.device('cpu')))
#model.load_state_dict(torch.load(args.restore_from, map_location=torch.device(args.local_rank)))
else:
print('File not exists in the reload path: {}'.format(args.restore_from))
model.eval()
model.cuda()
testloader = data.DataLoader(
MyoPSDataSetVal(args.data_dir, args.val_list),
batch_size=1, shuffle=False, pin_memory=True)
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
dice_LV = 0
dice_RV = 0
dice_MY = 0
dice_edema = 0
dice_scars = 0
for index, batch in enumerate(testloader):
# print('%d processd'%(index))
image, label, name, affine = batch
affine = affine[0].numpy()
with torch.no_grad():
output = predict_sliding(model, image, input_size, args.num_classes)
seg_pred = np.asarray(np.argmax(output, axis=1), dtype=np.uint8)
seg_pred = np.where(seg_pred == 1, 500, seg_pred)
seg_pred = np.where(seg_pred == 2, 600, seg_pred)
seg_pred = np.where(seg_pred == 3, 200, seg_pred)
seg_pred = np.where(seg_pred == 4, 1220, seg_pred)
seg_pred = np.where(seg_pred == 5, 2221, seg_pred)
seg_pred_background = (seg_pred == 0)
seg_pred_LV = (seg_pred == 500)
seg_pred_RV = (seg_pred == 600)
seg_pred_MY = (seg_pred == 200)
seg_pred_edema = (seg_pred == 1220)
seg_pred_scars = (seg_pred == 2221)
seg_gt = np.asarray(np.argmax(label.cpu().numpy(), axis=1), dtype=np.uint8)
seg_gt = np.where(seg_gt == 1, 500, seg_gt)
seg_gt = np.where(seg_gt == 2, 600, seg_gt)
seg_gt = np.where(seg_gt == 3, 200, seg_gt)
seg_gt = np.where(seg_gt == 4, 1220, seg_gt)
seg_gt = np.where(seg_gt == 5, 2221, seg_gt)
seg_gt_background = (seg_gt == 0)
seg_gt_LV = (seg_gt == 500)
seg_gt_RV = (seg_gt == 600)
seg_gt_MY = (seg_gt == 200)
seg_gt_edema = (seg_gt == 1220)
seg_gt_scars = (seg_gt == 2221)
dice_LV_i = dice_score(seg_pred_LV, seg_gt_LV)
dice_RV_i = dice_score(seg_pred_RV, seg_gt_RV)
dice_MY_i = dice_score(seg_pred_MY, seg_gt_MY)
dice_edema_i = dice_score(seg_pred_edema, seg_gt_edema)
dice_scars_i = dice_score(seg_pred_scars, seg_gt_scars)
print('Processing {}: LV = {:.4}, RV = {:.4}, MY = {:.4}, edema = {:.4}, scars = {:.4}'.format(name, dice_LV_i, dice_RV_i, dice_MY_i, dice_edema_i, dice_scars_i))
dice_LV += dice_LV_i
dice_RV += dice_RV_i
dice_MY += dice_MY_i
dice_edema += dice_edema_i
dice_scars += dice_scars_i
seg_pred = seg_pred[0].transpose((1,2,0)) #240x240x155
seg_gt = seg_gt[0].transpose((1,2,0))
seg_pred = nib.Nifti1Image(seg_pred, affine=affine)
seg_gt = nib.Nifti1Image(seg_gt, affine=affine)
# seg_name = name[0].replace("volume", "segmentation")
seg_name = name[0]
seg_save_p = os.path.join(args.output_path+'/%s.nii.gz' % (seg_name))
gt_save_p = os.path.join(args.output_path + '/%s_gt.nii.gz' % (seg_name))
nib.save(seg_pred, seg_save_p)
nib.save(seg_gt, gt_save_p)
dice_LV_avg = dice_LV / (index + 1)
dice_RV_avg = dice_RV / (index + 1)
dice_MY_avg = dice_MY / (index + 1)
dice_edema_avg = dice_edema / (index + 1)
dice_scanrs_avg = dice_scars / (index + 1)
print('Average score: LV = {:.4}, RV = {:.4}, MY = {:.4}, edema = {:.4}, scars = {:.4}'.format(dice_LV_avg, dice_RV_avg, dice_MY_avg, dice_edema_avg, dice_scanrs_avg))
if __name__ == '__main__':
main()