-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path230Acode.R
671 lines (564 loc) · 26 KB
/
230Acode.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# Import libraries
library(ggplot2) # plotting
library(naniar) # fill na
library(visdat)
library(dplyr)
library(ggmosaic) # Mosaic plot
library(gridExtra) # multipanel plots
library(MASS) # mvrnorm
library(mvtnorm)
library(Matrix)
library(glmnet)
library(nortest)
library(nnet) # multinomial logistic regression
library(MASS) # ordinal logistic regression
library(MSwM)
library("car")
library(urca)
library(tseries)
### 0. Set up
set.seed(42)
data = read.csv("230Adata.csv")
df = as.data.frame(data)
n = nrow(df) # 915
colnames(df) # "DATE" "UNRATE" "FEDFUNDS" "GDP" "CPIAUCSL" "BOPTEXP" "SPY"
subdf = df[,c(1,2,3,4,5)] # subdf is the data with all populated fields, contiguous
colnames(subdf) # "DATE" "UNRATE" "FEDFUNDS" "GDP" "CPIAUCSL"
subdf = na.omit(subdf)
nsub = nrow(subdf) # 834
n = nrow(subdf)
n.train = 700
n.test = n - n.train
subdf.train = subdf[1:n.train,] # train set
subdf.test = subdf[(n.train+1):n,] # test set
### 1. Data visualisation
summary(subdf)
# line plot of UNRATE
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
ggplot() + geom_line(aes(x=1:(n.train-1),y=diff(subdf.train$UNRATE, 1)))+
labs(x = "Months since 1954 Jul", y = "Diff(1)") +
theme_minimal()
# ADF Test for Stationarity
adf_test = adf.test(diff(subdf.train$UNRATE, 1))
print(adf_test) # stationary
# ACF and PACF plots
plot(acf(diff(subdf.train$UNRATE, 1)), main="ACF on Diff(1)") # some significant ACF
plot(pacf(diff(subdf.train$UNRATE, 1)), main="PACF on Diff(1)") # some significant PACF
# PACF suggests yt should depend on y(t-1), y(t-2), y(t-3), y(t-4), y(t-12), y(t-24)
# Correlation Matrix
subsubdf = subdf.train[1:(nrow(subdf.train)-1),]
subsubdf$diff = diff(subdf.train$UNRATE, 1)
cor(subsubdf[,c("diff","UNRATE","FEDFUNDS","GDP","CPIAUCSL")]) # correlation matrix
# diff positively correlated with FEDFUNDS, GDP, CPIAUCSL
# negatively correlated with UNRATE (previous step)
# diff UNRATE FEDFUNDS GDP CPIAUCSL
# diff 1.00000000 -0.05214588 0.11122681 0.0249548 0.01972545
ggplot() + geom_histogram(colour="black", fill="white", aes(subsubdf$diff))
ggplot(data = subsubdf, aes(x = UNRATE, y = diff)) +
geom_point() + geom_smooth(method = "lm", se = FALSE) +
labs(x = "UNRATE", y = "diff")
# UNRATE and diff has negative correlation (not significant)
cor.test(subsubdf$UNRATE, subsubdf$diff) # t = -1.3786, df = 697, p-value = 0.1685
ggplot(data = subsubdf, aes(x = FEDFUNDS, y = diff)) +
geom_point() + geom_smooth(method = "lm", se = FALSE) +
labs(x = "FEDFUNDS", y = "diff")
# FEDFUNDS and diff has positive correlation (significant)
cor.test(subsubdf$FEDFUNDS, subsubdf$diff) # t = 2.9548, df = 697, p-value = 0.003234
ggplot(data = subsubdf, aes(x = GDP, y = diff)) +
geom_point() + geom_smooth(method = "lm", se = FALSE) +
labs(x = "GDP", y = "diff")
# GDP and diff has positive correlation (not significant)
cor.test(subsubdf$GDP, subsubdf$diff) # t = 0.65903, df = 697, p-value = 0.5101
ggplot(data = subsubdf, aes(x = CPIAUCSL, y = diff)) +
geom_point() + geom_smooth(method = "lm", se = FALSE) +
labs(x = "CPIAUCSL", y = "diff")
# CPI and diff has positive correlation (not significant)
cor.test(subsubdf$CPIAUCSL, subsubdf$diff) # t = 0.52087, df = 697, p-value = 0.6026
# Overall MSPE
calculate_mse <- function(observed_values, predicted_values) {
squared_diff <- (observed_values - predicted_values)^2
mse <- mean(squared_diff)
return(mse)
}
# Pre-COVID-19 MSPE
calculate_mse_cutoff <- function(observed_values, predicted_values, cutoff=50) {
observed_values = observed_values[1:cutoff]
predicted_values = predicted_values[1:cutoff]
squared_diff <- (observed_values - predicted_values)^2
mse <- mean(squared_diff)
return(mse)
}
### 1.5. Effect of Interest Rate on Unemployment
# Is interest rate an important covariate?
onedf = subdf
onedf$DATE = NULL
# add in diff
twodf = onedf[1:(nrow(onedf)-1),]
twodf$diff = diff(onedf$UNRATE, 1)
ggplot() + geom_histogram(colour="black", fill="white", aes(onedf$FEDFUNDS)) # histogram of FEDFUNDS
cor(twodf$diff, twodf$FEDFUNDS) # correlation between UNRATE and FEDFUNDS
# * Regression 1: diff ~ 1 + FEDFUNDS
ols.fit = lm(diff~FEDFUNDS, data=twodf)
summary(ols.fit) # se = 0.004094
ols.fit.hc0 = sqrt(diag(hccm(ols.fit, type="hc0")))
ols.fit.hc0 # robust beta error = 0.004602488
# * Regression 2: diff ~ 1 + FEDFUNDS + GDP + CPI + UNRATE
ols.fit = lm(diff~., data=twodf)
summary(ols.fit) # se = 4.920e-03
ols.fit.hc0 = sqrt(diag(hccm(ols.fit, type="hc0")))
ols.fit.hc0 # robust beta error = 2.745246e-03
# adding the lags
onepdf = onedf
onepdf$lag1 = lag(onedf$UNRATE, 1)
onepdf$lag2 = lag(onedf$UNRATE, 2)
onepdf$lag3 = lag(onedf$UNRATE, 3)
onepdf$lag4 = lag(onedf$UNRATE, 4)
onepdf$lag12 = lag(onedf$UNRATE, 12)
onepdf$lag24 = lag(onedf$UNRATE, 24)
one.prime.df = onepdf[1:(nrow(onepdf)-1),]
one.prime.df$diff = diff(onepdf$UNRATE, 1)
one.prime.df = na.omit(one.prime.df)
# * Regression 3: diff ~ 1 + FEDFUNDS + GDP + CPI + UNRATE + lag1 + lag2 + lag3 + lag4 + lag12 + lag24
ols.fit = lm(diff~., data=one.prime.df)
summary(ols.fit) # se = 5.147e-03
ols.fit.hc0 = sqrt(diag(hccm(ols.fit, type="hc0")))
ols.fit.hc0 # robust beta error = 2.937838e-03
### 2. Baseline Models
# 2.1 Simply predict using the previous month's unemployment rate
y.pred = c(subdf.train$UNRATE[n.train], subdf.test$UNRATE[1:(n.test - 1)])
calculate_mse(subdf.test$UNRATE, y.pred) # 0.9312687
calculate_mse_cutoff(subdf.test$UNRATE, y.pred) # 0.027
ggplot() + geom_line(aes(x=1:n.test,y=y.pred), color="blue") +
geom_line(aes(x=1:n.test,y=subdf.test$UNRATE), color="darkgreen")+
labs(x="Months since Oct 2012", y="Unemployment Rate") +
theme_minimal()
# Prediction lags behind by 1
# 2.2 Simply use the previous two data points to predict the next month's unemployment rate
y.pred = 2*c(subdf.train$UNRATE[n.train], subdf.test$UNRATE[1:(n.test - 1)]) - c(subdf.train$UNRATE[n.train-1], subdf.train$UNRATE[n.train], subdf.test$UNRATE[1:(n.test - 2)])
calculate_mse(subdf.test$UNRATE, y.pred) # 1.842836
calculate_mse_cutoff(subdf.test$UNRATE, y.pred) # 0.0568
ggplot() + geom_line(aes(x=1:n.test,y=y.pred), color="blue") +
geom_line(aes(x=1:n.test,y=subdf.test$UNRATE), color="darkgreen")+
labs(x="Months since Oct 2012", y="Unemployment Rate") +
theme_minimal()
# 2.3 Use AR(4)
arima_model = arima(subdf.train$UNRATE, order = c(4, 0, 0))
summary(arima_model)
arima.coef = coef(arima_model)
arima.pred = numeric(n.test)
for (i in (n.train+1):n){
arima.pred[i - n.train] = arima.coef%*%c(subdf[(i - 1),]$UNRATE, subdf[(i - 2),]$UNRATE, subdf[(i - 3),]$UNRATE, subdf[(i - 4),]$UNRATE, 0)
}
calculate_mse(subdf.test$UNRATE, arima.pred) # 1.089113
calculate_mse_cutoff(subdf.test$UNRATE, arima.pred) # 0.03116826
ggplot() + geom_line(aes(x=1:n.test,y=arima.pred), color="blue") +
geom_line(aes(x=1:n.test,y=subdf.test$UNRATE), color="darkgreen")+
labs(x="Months since Oct 2012", y="Unemployment Rate") +
theme_minimal()
### 3. Ridge Regression
# Idea is to use other covariates to improve prediction error
# 3.1 Use the covariates at the same time: UNRATE FEDFUNDS GDP CPIAUCSL
subdf.train.ridge = subdf.train[1:(n.train - 1),]
subdf.train.ridge$diff = diff(subdf.train$UNRATE, 1)
subdf.train.ridge$DATE = NULL
y = subdf.train.ridge$diff
subdf.train.ridge$diff = NULL
X = as.matrix(subdf.train.ridge)
cv_model = cv.glmnet(X, y, alpha = 0)
best_lambda = cv_model$lambda.min # 0.00212585
ridge_model_best = glmnet(X, y, alpha = 0, lambda = best_lambda)
coef(ridge_model_best)
# s0
# (Intercept) 6.838000e-03
# UNRATE -7.232122e-03
# FEDFUNDS 9.390256e-03
# GDP 1.498277e-05
# CPIAUCSL -8.679753e-04
fitted_values = predict(ridge_model_best, newx = X)
calculate_mse(y, fitted_values) # 0.03546902
ggplot() + geom_line(aes(x=1:length(fitted_values),y=fitted_values), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
# Evaluate on test set
subdf.test.ridge = subdf.test[1:(n.test-1),]
subdf.test.ridge$diff = diff(subdf.test$UNRATE, 1)
subdf.test.ridge$DATE = NULL
y = subdf.test.ridge$diff
subdf.test.ridge$diff = NULL
X = as.matrix(subdf.test.ridge)
y.pred = predict(ridge_model_best, newx = X)
calculate_mse(y, y.pred) # 0.9388009
calculate_mse_cutoff(y, y.pred) # 0.03039402
ggplot() + geom_line(aes(x=1:length(y.pred),y=y.pred), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
# Cumulative Plot
y.pred.cumulative = y.pred + subdf.test$UNRATE[1:(n.test-1)]
y = subdf.test[2:n.test,]$UNRATE
ggplot() + geom_line(aes(x=1:length(y.pred.cumulative),y=y.pred.cumulative), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
# 3.2 Use in addition the lags y(t-1), y(t-2), y(t-3), y(t-4), y(t-12), y(t-24) suggested by PACF
subdf.train.ridge.ii = subdf.train
subdf.train.ridge.ii$DATE = NULL
subdf.train.ridge.ii <- subdf.train.ridge.ii %>%
mutate(
lag_1 = lag(UNRATE, 1),
lag_2 = lag(UNRATE, 2),
lag_3 = lag(UNRATE, 3),
lag_4 = lag(UNRATE, 4),
lag_12 = lag(UNRATE, 12),
lag_24 = lag(UNRATE, 24)
)
subdf.train.ridge.ii = na.omit(subdf.train.ridge.ii) # omit rows with no lags
nsub = nrow(subdf.train.ridge.ii)
subdf.train.ridge.ii.final = subdf.train.ridge.ii[1:(nsub - 1),]
subdf.train.ridge.ii.final$diff = diff(subdf.train.ridge.ii$UNRATE, 1)
y = subdf.train.ridge.ii.final$diff
subdf.train.ridge.ii.final$diff = NULL
X = as.matrix(subdf.train.ridge.ii.final)
cv_model = cv.glmnet(X, y, alpha = 0)
best_lambda = cv_model$lambda.min # 0.004143626
ridge_model_best = glmnet(X, y, alpha = 0, lambda = best_lambda)
coef(ridge_model_best)
# s0
# (Intercept) 7.108730e-02
# UNRATE 5.511277e-02
# FEDFUNDS 8.260150e-03
# GDP 6.931299e-06
# CPIAUCSL -2.727976e-04
# lag_1 5.537325e-02
# lag_2 -1.089737e-02
# lag_3 -3.174353e-02
# lag_4 -6.846218e-02
# lag_12 -1.422965e-02
# lag_24 -5.662170e-03
# The small lag coefficients are concerning, because their tick size is 0.1, so a change in 0.1 units correspond to a 0.001 change, which is 2 magnitudes less than a tick size of diff (0.1)
# I don't expect good results here
fitted_values = predict(ridge_model_best, newx = X)
calculate_mse(y, fitted_values) # 0.03068849 lower apparent error!
ggplot() + geom_line(aes(x=1:length(fitted_values),y=fitted_values), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
# Evaluate on test set
subdf.train.ridge.ii.test = subdf[(n.train-23):n,]
subdf.train.ridge.ii.test$DATE = NULL
subdf.train.ridge.ii.test <- subdf.train.ridge.ii.test %>%
mutate(
lag_1 = lag(UNRATE, 1),
lag_2 = lag(UNRATE, 2),
lag_3 = lag(UNRATE, 3),
lag_4 = lag(UNRATE, 4),
lag_12 = lag(UNRATE, 12),
lag_24 = lag(UNRATE, 24)
)
subdf.train.ridge.ii.test = na.omit(subdf.train.ridge.ii.test)
subdf.train.ridge.ii.test = subdf.train.ridge.ii.test[1:(n.test-1),]
subdf.train.ridge.ii.test$diff = diff(subdf.test$UNRATE, 1)
y = subdf.train.ridge.ii.test$diff
subdf.train.ridge.ii.test$diff = NULL
X = as.matrix(subdf.train.ridge.ii.test)
y.pred = predict(ridge_model_best, newx = X)
calculate_mse(y, y.pred) # 1.012032
calculate_mse_cutoff(y, y.pred) # 0.02651024 # better than naive method
ggplot() + geom_line(aes(x=1:length(y.pred),y=y.pred), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
# Cumulative Plot
y.pred.cumulative = y.pred + subdf.test$UNRATE[1:(n.test-1)]
y = subdf.test[2:n.test,]$UNRATE
ggplot() + geom_line(aes(x=1:length(y.pred.cumulative),y=y.pred.cumulative), color="blue", linewidth=0.2) +
geom_line(aes(x=1:length(y),y=y), color="darkgreen", linewidth=0.2)
ggplot() + geom_line(aes(x=1:(n.test-1),y=y - y.pred.cumulative), color="blue", linewidth=0.2) # residual plot
### 4. Indicator Regime Regression
# Idea: use indicators on past drops to detect regime change
subsubdf = subdf.train[1:(nrow(subdf.train)-1),]
subsubdf$diff = diff(subdf.train$UNRATE, 1)
subsubdf$DATE = NULL
# grid search
gap_arr = seq(3, 10, 1)
for (gap in gap_arr){
subsubdf.iv = subsubdf[(gap+1):nrow(subsubdf),]
subsubdf.iv$ind = diff(subsubdf$UNRATE, lag=gap)
first_quartile = as.numeric(summary(subsubdf.iv$ind)[2])
third_quartile = as.numeric(summary(subsubdf.iv$ind)[5])
lambda_arr = seq(first_quartile, third_quartile, 0.1)
lambda_arr = seq(-0.7, 0.7, 0.1)
l = length(lambda_arr)
res = numeric(l)
cnt = 1
for (lambda in lambda_arr){
# 4.1 Separate into two regimes
regime.one.lambda = subsubdf.iv[subsubdf.iv$ind > lambda,]
regime.two.lambda = subsubdf.iv[subsubdf.iv$ind <= lambda,]
# 4.2 Do separate regression
y.one = regime.one.lambda$diff
regime.one.lambda$diff = NULL
X.one = as.matrix(regime.one.lambda)
cv_model.one = cv.glmnet(X.one, y.one, alpha = 0)
best_lambda.one = cv_model.one$lambda.min # 0.004143626 (this is pathetic)
ridge_model_best.one = glmnet(X.one, y.one, alpha = 0, lambda = best_lambda.one)
fitted_values.one = predict(ridge_model_best.one, newx = X.one)
error.one = calculate_mse(y.one, fitted_values.one)
y.two = regime.two.lambda$diff
regime.two.lambda$diff = NULL
X.two = as.matrix(regime.two.lambda)
cv_model.two = cv.glmnet(X.two, y.two, alpha = 0)
best_lambda.two = cv_model.two$lambda.min # 0.004143626 (this is pathetic)
ridge_model_best.two = glmnet(X.two, y.two, alpha = 0, lambda = best_lambda.two)
fitted_values.two = predict(ridge_model_best.two, newx = X.two)
calculate_mse(y.two, fitted_values.two)
error.two = calculate_mse(y.two, fitted_values.two)
error.tot = (error.one*length(y.one) + error.two*length(y.two))/(length(y.one) + length(y.two))
print(paste(lambda, error.tot, sep=" -> "))
res[cnt] = error.tot
cnt = cnt + 1
}
idx = which.min(res)
print(gap)
print(lambda_arr[idx])
}
# choose optimal (lambda*, gap*) from the grid search
lambda = 0.1 # lambda*
gap = 5 # gap*
subsubdf.iv = subsubdf[(gap+1):nrow(subsubdf),]
subsubdf.iv$ind = diff(subsubdf$UNRATE, lag=gap)
regime.one.lambda.star = subsubdf.iv[subsubdf.iv$ind > lambda,]
regime.two.lambda.star = subsubdf.iv[subsubdf.iv$ind <= lambda,]
ggplot() + geom_point(aes(x=as.numeric(rownames(regime.one.lambda.star)),y=regime.one.lambda.star$UNRATE)) +
geom_point(aes(x=as.numeric(rownames(regime.two.lambda.star)),y=regime.two.lambda.star$UNRATE), color="blue") +
labs(x="Months since 1954 Jul", y="Unemployment Rate") +
theme_minimal()
# training error calculation
y.one.star = regime.one.lambda.star$diff
regime.one.lambda.star$diff = NULL
X.one.star = as.matrix(regime.one.lambda.star)
cv_model.one.star = cv.glmnet(X.one.star, y.one.star, alpha = 0)
best_lambda.one.star = cv_model.one.star$lambda.min # 0.007515883
ridge_model_best.one.star = glmnet(X.one.star, y.one.star, alpha = 0, lambda = best_lambda.one.star)
fitted_values.one.star = predict(ridge_model_best.one.star, newx = X.one.star)
error.one.star = calculate_mse(y.one.star, fitted_values.one.star)
error.one.star # 0.03859857 (apparent error for this regime)
y.two.star = regime.two.lambda.star$diff
regime.two.lambda.star$diff = NULL
X.two.star = as.matrix(regime.two.lambda.star)
cv_model.two.star = cv.glmnet(X.two.star, y.two.star, alpha = 0)
best_lambda.two.star = cv_model.two.star$lambda.min # 0.004143626 (this is pathetic)
ridge_model_best.two.star = glmnet(X.two.star, y.two.star, alpha = 0, lambda = best_lambda.two.star)
fitted_values.two.star = predict(ridge_model_best.two.star, newx = X.two.star)
error.two.star = calculate_mse(y.two.star, fitted_values.two.star)
error.two.star # 0.02491733 (apparent error for this regime)
ggplot() + geom_point(aes(x=as.numeric(rownames(regime.one.lambda.star)),y=y.one.star)) +
geom_point(aes(x=as.numeric(rownames(regime.two.lambda.star)),y=y.two.star), color="blue") +
geom_point(aes(x=as.numeric(rownames(regime.one.lambda.star)),y=fitted_values.one.star), color="green") +
geom_point(aes(x=as.numeric(rownames(regime.two.lambda.star)),y=fitted_values.two.star), color="red")
mse.up = calculate_mse(y.one.star, fitted_values.one.star)
mse.down = calculate_mse(y.two.star, fitted_values.two.star)
mse.tot = (length(y.one.star)*mse.up + length(y.two.star)*mse.down)/(length(y.two.star) + length(y.one.star)) # 0.0292149
mse.tot # training error = 0.0292149, which is good
indicator.pred = numeric(n.test)
classification.res = numeric(n.test)
subdf.test.cur = subdf
subdf.test.cur$DATE = NULL
subdf.test.cur$ind = c(rep(NA, gap), diff(subdf.test.cur$UNRATE, lag=gap))
for (i in (n.train+1):n){
if (subdf.test.cur[i,]$ind > lambda){
# regime 1
classification.res[i - n.train] = 1
indicator.pred[i - n.train] = predict(ridge_model_best.one.star, newx = subdf.test.cur[i,])
} else {
# regime 2
classification.res[i - n.train] = 2
indicator.pred[i - n.train] = predict(ridge_model_best.two.star, newx = subdf.test.cur[i,])
}
}
y.ind.true = subdf.test.cur$UNRATE[(n.train+1):n] - subdf.test.cur$UNRATE[n.train:(n-1)]
calculate_mse(y.ind.true, indicator.pred) # 0.8221356
calculate_mse_cutoff(y.ind.true, indicator.pred) # 0.02453915
ggplot() + geom_line(aes(x=1:n.test,y=subdf.test.cur$UNRATE[n.train:(n-1)]+indicator.pred), color="blue") +
geom_line(aes(x=1:n.test,y=subdf.test.cur$UNRATE[(n.train+1):n]), color="green") # plot of prediction vs actual
ggplot() + geom_line(aes(x=1:n.test,y=subdf.test.cur$UNRATE[(n.train+1):n] - (subdf.test.cur$UNRATE[n.train:(n-1)]+indicator.pred)), color="black") # residual pplot
ggplot() + geom_line(aes(x=1:75,y=(subdf.test.cur$UNRATE[(n.train+1):n] - (subdf.test.cur$UNRATE[n.train:(n-1)]+indicator.pred))[1:75]), linewidth=0.2,color="black") +
geom_line(aes(x=1:75,y=c(NA, (y - y.pred.cumulative)[1:74])), linewidth=0.2, color="blue") # residual plot
# Plot of prediction vs actual and regime changes
ggplot() + geom_line(aes(x=1:n.test,y=subdf.test.cur$UNRATE[n.train:(n-1)]+indicator.pred), color="blue") +
geom_line(aes(x=1:n.test,y=subdf.test.cur$UNRATE[(n.train+1):n]), color="green") +
geom_line(aes(x=1:n.test,y=classification.res), color="orange") +
labs(x="Months since 2012 Oct", y="Unemployment Rate") +
theme_minimal()
### 5. Markov Switching Model
### 5.1 p = 1 i.e. diff(t) ~ 1 + diff(t-1)
subdf.train.v = subdf.train
subdf.train.v$DATE = NULL
subdf.train.v2 = subdf.train.v[1:(nrow(subdf.train.v)-1),]
subdf.train.v2$diff = diff(subdf.train.v$UNRATE, 1)
model = lm(diff~1,data=subdf.train.v2)
mod = msmFit(model, k=2, p=1, sw=rep(TRUE,3))
plotProb(mod, which=1) # smoothed probabilities
plotProb(mod, which=2) # regime 1
plotProb(mod, which=3) # regime 2
print(mod@Coef) # coefficients in both regimes
print(mod@transMat) # translation coefficients
print(mod@iniProb) # initial probability
print(mod@seCoef) # standard error of coefficients
print(mod@Fit@filtProb) # filtered probability
# print(mod@Fit@smoTransMat) # transition matrix array
state.here = numeric(nrow(mod@Fit@filtProb))
for(i in 1:nrow(mod@Fit@filtProb)){
# arbitrarily chosing 0.5 as the threshold
if (mod@Fit@filtProb[i,1]>mod@Fit@filtProb[i,2]){
state.here[i] = 1
} else {
state.here[i] = 2
}
}
# plot of unemployment rate and regime changes
# even for the simple model, it tracks the upslope and downslopes reasonably
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 2), state.here)),color="orange")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
# evaluating test set
subdf.v = subdf
subdf.v$DATE = NULL
subdf.v2 = subdf.train.v[1:(nrow(subdf.v)-1),]
subdf.v2$diff = diff(subdf.v$UNRATE, 1)
pred.v = numeric(n.test)
print(nrow(subdf.v2) - n.train)
count = 0
for (i in n.train:nrow(subdf.v2)){
count = count + 1
if (count > 50){
break
}
print(count)
model = lm(diff~1,data=subdf.v2[1:(i-1),])
mod = msmFit(model, k=2, p=1, sw=rep(TRUE,3))
nnn = nrow(mod@Fit@filtProb)
if (mod@Fit@filtProb[nnn,1]>mod@Fit@filtProb[nnn,2]){ # check the last step state
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[1,])%*%c(1, subdf.v2[(i-1),]$diff))
} else {
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[2,])%*%c(1, subdf.v2[(i-1),]$diff))
}
}
# Plot of actual unemployment rate and prediction
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 2), state.here)),color="orange")+
geom_line(aes(x=(n.train+1):(n.train+50),y=pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE),color="blue")+
geom_line(aes(x=(n.train+1):(n.train+50),y=subdf.v[(n.train+1):(n.train+50),]$UNRATE),color="green")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
calculate_mse_cutoff(subdf.v[(n.train+1):(n.train+50),]$UNRATE, pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE) # 0.02454834 wow!
### 5.2 p = 4 i.e. diff(t) ~ 1 + diff(t-1) + diff(t-2) + diff(t-3) + diff(t-4)
subdf.train.v = subdf.train
subdf.train.v$DATE = NULL
subdf.train.v2 = subdf.train.v[1:(nrow(subdf.train.v)-1),]
subdf.train.v2$diff = diff(subdf.train.v$UNRATE, 1)
model = lm(diff~1,data=subdf.train.v2)
mod = msmFit(model, k=2, p=4, sw=rep(TRUE,6))
plotProb(mod, which=1) # smoothed probabilities
plotProb(mod, which=2) # regime 1
plotProb(mod, which=3) # regime 2
print(mod@Coef) # coefficients
print(mod@transMat) # translation coefficients
print(mod@iniProb) # initial probability
print(mod@seCoef) # standard error of coefficients
# print(mod@Fit@smoTransMat) # transition matrix array
state.here = numeric(nrow(mod@Fit@filtProb))
for(i in 1:nrow(mod@Fit@filtProb)){
# arbitrarily chosing 0.5 as the threshold
if (mod@Fit@filtProb[i,1]>mod@Fit@filtProb[i,2]){
state.here[i] = 1
} else {
state.here[i] = 2
}
}
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 5), state.here)),color="orange")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
subdf.v = subdf
subdf.v$DATE = NULL
subdf.v2 = subdf.train.v[1:(nrow(subdf.v)-1),]
subdf.v2$diff = diff(subdf.v$UNRATE, 1)
pred.v = numeric(n.test)
print(nrow(subdf.v2) - n.train)
count = 0
for (i in n.train:nrow(subdf.v2)){
count = count + 1
if (count > 50){
break
}
print(count)
model = lm(diff~1,data=subdf.v2[1:(i-1),])
mod = msmFit(model, k=2, p=4, sw=rep(TRUE,6))
nnn = nrow(mod@Fit@filtProb)
if (mod@Fit@filtProb[nnn,1]>mod@Fit@filtProb[nnn,2]){ # check the last step's state
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[1,])%*%c(1, subdf.v2[(i-1),]$diff, subdf.v2[(i-2),]$diff, subdf.v2[(i-3),]$diff, subdf.v2[(i-4),]$diff))
} else {
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[2,])%*%c(1, subdf.v2[(i-1),]$diff, subdf.v2[(i-2),]$diff, subdf.v2[(i-3),]$diff, subdf.v2[(i-4),]$diff))
}
}
# Plot of actual unemployment rate and prediction
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 5), state.here)),color="orange")+
geom_line(aes(x=(n.train+1):(n.train+50),y=pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE),color="blue")+
geom_line(aes(x=(n.train+1):(n.train+50),y=subdf.v[(n.train+1):(n.train+50),]$UNRATE),color="green")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
calculate_mse_cutoff(subdf.v[(n.train+1):(n.train+50),]$UNRATE, pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE) # 0.02313789 wow wow!
### 5.3 p = 4, but include all other covariates i.e. diff(t) ~ 1 + UNRATE + GDP + CPI + FEDFUNDS + diff(t-1) + diff(t-2) + diff(t-3) + diff(t-4)
subdf.v = subdf.train
subdf.v$DATE = NULL
subdf.v2 = subdf.v[1:(nrow(subdf.v)-1),]
subdf.v2$diff = diff(subdf.v$UNRATE, 1)
model = lm(diff~.,data=subdf.v2)
mod = msmFit(model, k=2, p=4, sw=rep(TRUE,10))
plotProb(mod, which=1) # smoothed probabilities
plotProb(mod, which=2) # regime 1
plotProb(mod, which=3) # regime 2
print(mod@Coef) # coefficients
print(mod@transMat) # translation coefficients
print(mod@iniProb) # initial probability
print(mod@seCoef) # standard error of coefficients
# print(mod@Fit@smoTransMat) # transition matrix array
state.here = numeric(nrow(mod@Fit@filtProb))
for(i in 1:nrow(mod@Fit@filtProb)){
# arbitrarily chosing 0.5 as the threshold
if (mod@Fit@filtProb[i,1]>mod@Fit@filtProb[i,2]){
state.here[i] = 1
} else {
state.here[i] = 2
}
}
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 5), state.here)),color="orange")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
subdf.v = subdf
subdf.v$DATE = NULL
subdf.v2 = subdf.v[1:(nrow(subdf.v)-1),]
subdf.v2$diff = diff(subdf.v$UNRATE, 1)
pred.v = numeric(n.test)
print(nrow(subdf.v2) - n.train)
count = 0
for (i in n.train:nrow(subdf.v2)){
count = count + 1
if (count > 50){
break
}
print(count)
model = lm(diff~.,data=subdf.v2[1:(i-1),])
mod = msmFit(model, k=2, p=4, sw=rep(TRUE,10))
nnn = nrow(mod@Fit@filtProb)
if (mod@Fit@filtProb[nnn,1]>mod@Fit@filtProb[nnn,2]){ # check the last step's state
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[1,])%*%c(1, subdf.v2[i,]$UNRATE, subdf.v2[i,]$FEDFUNDS, subdf.v2[i,]$GDP, subdf.v2[i,]$CPIAUCSL, subdf.v2[(i-1),]$diff, subdf.v2[(i-2),]$diff, subdf.v2[(i-3),]$diff, subdf.v2[(i-4),]$diff))
} else {
pred.v[i - n.train + 1] = as.numeric(as.numeric(mod@Coef[2,])%*%c(1, subdf.v2[i,]$UNRATE, subdf.v2[i,]$FEDFUNDS, subdf.v2[i,]$GDP, subdf.v2[i,]$CPIAUCSL, subdf.v2[(i-1),]$diff, subdf.v2[(i-2),]$diff, subdf.v2[(i-3),]$diff, subdf.v2[(i-4),]$diff))
}
}
# Plot of actual unemployment rate and prediction
ggplot() + geom_line(aes(x=1:n.train,y=subdf.train$UNRATE)) +
geom_line(aes(x=1:n.train,y=c(rep(NA, 5), state.here)),color="orange")+
geom_line(aes(x=(n.train+1):(n.train+50),y=pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE),color="blue")+
geom_line(aes(x=(n.train+1):(n.train+50),y=subdf.v[(n.train+1):(n.train+50),]$UNRATE),color="green")+
labs(x = "Months since 1954 Jul", y = "Unemployment Rate")+
theme_minimal()
calculate_mse_cutoff(subdf.v[(n.train+1):(n.train+50),]$UNRATE, pred.v[1:50] + subdf.v[n.train:(n.train+49),]$UNRATE) # 0.02397587 wow wow!