forked from rmgarnett/gp_dla_detection
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspectrum_loss.m
76 lines (57 loc) · 2.18 KB
/
spectrum_loss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% spectrum_loss: computes the negative log likelihood for centered
% flux y:
%
% -log p(y | Lyα z, σ², M, ω², c₀, τₒ, β)
% = -log N(y; 0, MM' + diag(σ² + (ω ∘ (c₀ + a(1 + Lyα z)))²)),
%
% where a(Lyα z) is the approximate absorption due to Lyman α at
% redshift z:
%
% a(z) = 1 - exp(-τ₀(1 + z)ᵝ)
%
% and its derivatives wrt M, log ω, log c₉, log τ₀, and log β
function [nlog_p, dM, dlog_omega, dlog_c_0, dlog_tau_0, dlog_beta] = ...
spectrum_loss(y, lya_1pz, noise_variance, M, omega2, c_0, tau_0, beta)
log_2pi = 1.83787706640934534;
[n, k] = size(M);
% compute approximate Lyα optical depth/absorption
lya_optical_depth = tau_0 .* lya_1pz.^beta;
lya_absorption = exp(-lya_optical_depth);
% compute "absorption noise" contribution
scaling_factor = 1 - lya_absorption + c_0;
absorption_noise = omega2 .* scaling_factor.^2;
d = noise_variance + absorption_noise;
d_inv = 1 ./ d;
D_inv_y = d_inv .* y;
D_inv_M = bsxfun(@times, d_inv, M);
% use Woodbury identity, define
% B = (I + MᵀD⁻¹M),
% then
% K⁻¹ = D⁻¹ - D⁻¹MB⁻¹MᵀD⁻¹
B = M' * D_inv_M;
B(1:(k + 1):end) = B(1:(k + 1):end) + 1;
L = chol(B);
% C = B⁻¹MᵀD⁻¹
C = L \ (L' \ D_inv_M');
K_inv_y = D_inv_y - D_inv_M * (C * y);
log_det_K = sum(log(d)) + 2 * sum(log(diag(L)));
% negative log likelihood:
% ½ yᵀ (K + V + A)⁻¹ y + log det (K + V + A) + n log 2π
nlog_p = 0.5 * (y' * K_inv_y + log_det_K + n * log_2pi);
% gradient wrt M
K_inv_M = D_inv_M - D_inv_M * (C * M);
dM = -(K_inv_y * (K_inv_y' * M) - K_inv_M);
% compute diag K⁻¹ without computing full product
diag_K_inv = d_inv - sum(C .* D_inv_M')';
% gradient wrt log ω
dlog_omega = -(absorption_noise .* (K_inv_y.^2 - diag_K_inv));
% gradient wrt log c₀
da = c_0 * omega2 .* scaling_factor;
dlog_c_0 = -(K_inv_y .* da)' * K_inv_y + diag_K_inv' * da;
% gradient wrt log τ₀
da = omega2 .* scaling_factor .* lya_optical_depth .* lya_absorption;
dlog_tau_0 = -(K_inv_y .* da)' * K_inv_y + diag_K_inv' * da;
% gradient wrt log β
da = da .* log(lya_1pz) * beta;
dlog_beta = -(K_inv_y .* da)' * K_inv_y + diag_K_inv' * da;
end