-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathpredict.py
57 lines (46 loc) · 1.94 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import sys
import time
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
from tensorflow.examples.tutorials.mnist import input_data
n_input = 28 # MNIST data input (img shape: 28*28)
n_steps = 28 # timesteps
n_hidden = 128 # hidden layer num of features
n_classes = 10 # MNIST total classes (0-9 digits)
def rnn_model(x, weights, biases):
"""Build a rnn model for image"""
x = tf.transpose(x, [1, 0, 2])
x = tf.reshape(x, [-1, n_input])
x = tf.split(0, n_steps, x)
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights) + biases
def predict():
"""Predict unseen images"""
"""Step 0: load data and trained model"""
mnist = input_data.read_data_sets("./data/", one_hot=True)
checkpoint_dir = sys.argv[1]
"""Step 1: build the rnn model"""
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights')
biases = tf.Variable(tf.random_normal([n_classes]), name='biases')
pred = rnn_model(x, weights, biases)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
"""Step 2: predict new images with the trained model"""
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
"""Step 2.0: load the trained model"""
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir + 'checkpoints')
print('Loaded the trained model: {}'.format(checkpoint_file))
saver = tf.train.Saver()
saver.restore(sess, checkpoint_file)
"""Step 2.1: predict new data"""
test_len = 500
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
if __name__ == '__main__':
predict()