forked from ksachdeva/face-embeddings-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_facenet.py
executable file
·62 lines (54 loc) · 2.65 KB
/
gen_facenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import facenet
import lfw
import align_dataset_mtcnn as al
import os
import sys
import json
from tensorflow.python.ops import data_flow_ops
import time
def generate_embeddings(dataset, model_dir, out_dir):
# Serialize the path
paths = []
for i in range(len(dataset)):
nrof_image_1class = len(dataset[i])
for j in range(nrof_image_1class):
paths.append(dataset[i].image_paths[j])
with tf.Graph().as_default():
with tf.Session() as sess:
# Load the facenet model
print('Loading feature extraction model')
facenet.load_model(model_dir)
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
# Run forward pass to calculate embeddings
print('Calculating features for images')
nrof_images = len(paths)
data = []
count = 0
for e in dataset:
print('Processing %s ..' % e.name)
emb_array = []
for image_path in e.image_paths:
im = al.load_rgb_image(image_path) # get rgb image form image path
if im is not None:
aligned_image = al.get_frontal_face_detector(im, do_prewhiten = True) # rescaled and aligned face image, with whitening as default
if aligned_image is not None:
aligned_image = np.expand_dims(aligned_image, axis = 0)
feed_dict = {images_placeholder:aligned_image, phase_train_placeholder:False }
face_descriptor = sess.run(embeddings, feed_dict=feed_dict) # get the embeddings
emb_array.append(face_descriptor.tolist()[0]) # append the embedding for each name
count += 1
anEntry = {'name' : e.name, 'embeddings' : emb_array}
data.append(anEntry)
print("Skipped total number of %s images" %(nrof_images-count))
out_file_path = os.path.join(os.path.abspath(out_dir), 'facenet.json')
with open(out_file_path, 'w+') as outfile:
json.dump(data, outfile)