-
Notifications
You must be signed in to change notification settings - Fork 581
/
Copy pathexport_model.py
60 lines (45 loc) · 2.07 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import warnings
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.LMConfig import LMConfig
from model.model import Transformer
warnings.filterwarnings('ignore', category=UserWarning)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def export_transformers_model():
LMConfig.register_for_auto_class()
Transformer.register_for_auto_class("AutoModelForCausalLM")
lm_config = LMConfig()
lm_model = Transformer(lm_config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
moe_path = '_moe' if lm_config.use_moe else ''
ckpt_path = f'./out/single_chat/full_sft_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckpt_path, map_location=device)
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
lm_model.load_state_dict(state_dict, strict=False)
print(f'模型参数: {count_parameters(lm_model) / 1e6} 百万 = {count_parameters(lm_model) / 1e9} B (Billion)')
lm_model.save_pretrained("minimind-v1-small", safe_serialization=False)
def export_tokenizer():
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer',
trust_remote_code=True, use_fast=False)
tokenizer.save_pretrained("minimind-v1-small")
def push_to_hf():
def init_model():
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer',
trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained('minimind-v1-small', trust_remote_code=True)
return model, tokenizer
model, tokenizer = init_model()
# 推送到huggingface
model.push_to_hub("minimind-v1-small")
# tokenizer.push_to_hub("minimind-v1-small", safe_serialization=False)
if __name__ == '__main__':
# 1
export_transformers_model()
# 2
export_tokenizer()
# # 3
# push_to_hf()