forked from zaggo/SphereBot
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathDualStepper.cpp
154 lines (135 loc) · 3.75 KB
/
DualStepper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* Copyright 2015 by Jin Choi <jsc@alum.mit.edu>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*/
#include "DualStepper.h"
DualStepper::DualStepper(SingleStepper *xs, SingleStepper *ys, unsigned int stepsPerRev)
{
xStepper = xs;
yStepper = ys;
majorAxisSpeed = 0.0;
maxSpeed = 100.0;
xStepsPerRev = stepsPerRev;
}
void
DualStepper::setMaxSpeed(float s)
{
maxSpeed = s;
}
static int
octant(int dx, int dy)
{
if (dx > 0) {
if (dy > 0) {
if (dy < dx)
return 0;
else
return 1;
} else if (-dy < dx)
return 7;
else
return 6;
} else if (dy > 0) {
if (dy < -dx)
return 3;
else
return 2;
} else if (-dy < -dx)
return 4;
else
return 5;
}
void
DualStepper::travelTo(int ax, int ay, float speed)
{
int halfRevSteps = xStepsPerRev / 2;
int dx = abs(ax - xStepper->pos);
if (dx > halfRevSteps) {
if (ax > xStepper->pos) {
xStepper->pos += xStepsPerRev;
} else {
xStepper->pos -= xStepsPerRev;
}
}
moveTo(ax, ay, speed);
}
void
DualStepper::moveTo(int ax, int ay, float speed)
{
xStepper->targetPos = ax;
yStepper->targetPos = ay;
long dx = ax - xStepper->pos;
long dy = ay - yStepper->pos;
majorAxisSpeed = min(speed, maxSpeed) * max(abs(dx), abs(dy)) / sqrt(dx * dx + dy * dy);
switch (octant(dx, dy)) {
case 0:
plotLine(xStepper, yStepper, FORWARD, FORWARD, dx, dy);
break;
case 1:
plotLine(yStepper, xStepper, FORWARD, FORWARD, dy, dx);
break;
case 2:
plotLine(yStepper, xStepper, FORWARD, BACKWARD, dy, -dx);
break;
case 3:
plotLine(xStepper, yStepper, BACKWARD, FORWARD, -dx, dy);
break;
case 4:
plotLine(xStepper, yStepper, BACKWARD, BACKWARD, -dx, -dy);
break;
case 5:
plotLine(yStepper, xStepper, BACKWARD, BACKWARD, -dy, -dx);
break;
case 6:
plotLine(yStepper, xStepper, BACKWARD, FORWARD, -dy, dx);
break;
case 7:
plotLine(xStepper, yStepper, FORWARD, BACKWARD, dx, -dy);
break;
}
}
void
DualStepper::plotLine(SingleStepper *xAxis, SingleStepper *yAxis, uint8_t xdir, uint8_t ydir, unsigned int dx, unsigned int dy)
{
// usDelay is the nominal number of microseconds each step should take.
unsigned long usDelay = 1000000L / majorAxisSpeed;
// usPerStep is the actual number of microseconds to wait accounting for the time it takes to make the steps.
unsigned long usPerStep;
if (usDelay >= ONE_STEP_TIME)
usDelay -= ONE_STEP_TIME; // bake in a single x-axis step time
else
usDelay = 0; // clamp to zero so we don't get underflow
// Serial.print("delay: ");
// Serial.println(usDelay);
int error = 2 * dy - dx;
unsigned int y = 0;
// unsigned long time = millis();
for (int x = 1; x <= dx; x++) {
xAxis->step(xdir);
if (error > 0) {
yAxis->step(ydir);
// Take off another step delay from the wait time.
usPerStep = (usDelay >= ONE_STEP_TIME) ? usDelay - ONE_STEP_TIME : 0;
error += 2 * dy - 2 * dx;
} else {
usPerStep = usDelay;
error += 2 * dy;
}
delayMicroseconds(usPerStep);
}
// unsigned long endTime = millis();
// Serial.print("average delay in ms: ");
// Serial.println((endTime - time) / (float) dx);
}