-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtrain_cls.py
146 lines (110 loc) · 5.42 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import torch
from torch.backends import cudnn
cudnn.enabled = True
from torch.utils.data import DataLoader
from torchvision import transforms
import voc12.data
from tool import pyutils, imutils, torchutils
import argparse
import importlib
import torch.nn.functional as F
def validate(model, data_loader):
print('\nvalidating ... ', flush=True, end='')
val_loss_meter = pyutils.AverageMeter('loss')
model.eval()
with torch.no_grad():
for pack in data_loader:
img = pack[1]
label = pack[2].cuda(non_blocking=True)
x = model(img)
loss = F.multilabel_soft_margin_loss(x, label)
val_loss_meter.add({'loss': loss.item()})
model.train()
print('loss:', val_loss_meter.pop('loss'))
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=16, type=int)
parser.add_argument("--max_epoches", default=15, type=int)
parser.add_argument("--network", default="network.vgg16_cls", type=str)
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--wt_dec", default=5e-4, type=float)
parser.add_argument("--weights", required=True, type=str)
parser.add_argument("--train_list", default="voc12/train_aug.txt", type=str)
parser.add_argument("--val_list", default="voc12/val.txt", type=str)
parser.add_argument("--session_name", default="vgg_cls", type=str)
parser.add_argument("--crop_size", default=448, type=int)
parser.add_argument("--voc12_root", required=True, type=str)
args = parser.parse_args()
model = getattr(importlib.import_module(args.network), 'Net')()
pyutils.Logger(args.session_name + '.log')
print(vars(args))
train_dataset = voc12.data.VOC12ClsDataset(args.train_list, voc12_root=args.voc12_root,
transform=transforms.Compose([
imutils.RandomResizeLong(256, 512),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.1),
np.asarray,
model.normalize,
imutils.RandomCrop(args.crop_size),
imutils.HWC_to_CHW,
torch.from_numpy
]))
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True)
max_step = (len(train_dataset) // args.batch_size) * args.max_epoches
val_dataset = voc12.data.VOC12ClsDataset(args.val_list, voc12_root=args.voc12_root,
transform=transforms.Compose([
np.asarray,
model.normalize,
imutils.CenterCrop(500),
imutils.HWC_to_CHW,
torch.from_numpy
]))
val_data_loader = DataLoader(val_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=True)
param_groups = model.get_parameter_groups()
optimizer = torchutils.PolyOptimizer([
{'params': param_groups[0], 'lr': args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[1], 'lr': 2*args.lr, 'weight_decay': 0},
{'params': param_groups[2], 'lr': 10*args.lr, 'weight_decay': args.wt_dec},
{'params': param_groups[3], 'lr': 20*args.lr, 'weight_decay': 0}
], lr=args.lr, weight_decay=args.wt_dec, max_step=max_step)
if args.weights[-7:] == '.params':
assert args.network == "network.resnet38_cls"
import network.resnet38d
weights_dict = network.resnet38d.convert_mxnet_to_torch(args.weights)
elif args.weights[-11:] == '.caffemodel':
assert args.network == "network.vgg16_cls"
import network.vgg16d
weights_dict = network.vgg16d.convert_caffe_to_torch(args.weights)
else:
weights_dict = torch.load(args.weights)
model.load_state_dict(weights_dict, strict=False)
model = torch.nn.DataParallel(model).cuda()
model.train()
avg_meter = pyutils.AverageMeter('loss')
timer = pyutils.Timer("Session started: ")
for ep in range(args.max_epoches):
for iter, pack in enumerate(train_data_loader):
img = pack[1]
label = pack[2].cuda(non_blocking=True)
x = model(img)
loss = F.multilabel_soft_margin_loss(x, label)
avg_meter.add({'loss': loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (optimizer.global_step-1)%50 == 0:
timer.update_progress(optimizer.global_step / max_step)
print('Iter:%5d/%5d' % (optimizer.global_step - 1, max_step),
'Loss:%.4f' % (avg_meter.pop('loss')),
'imps:%.1f' % ((iter+1) * args.batch_size / timer.get_stage_elapsed()),
'Fin:%s' % (timer.str_est_finish()),
'lr: %.4f' % (optimizer.param_groups[0]['lr']), flush=True)
else:
validate(model, val_data_loader)
timer.reset_stage()
torch.save(model.module.state_dict(), args.session_name + '.pth')