-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbasic.lean
383 lines (329 loc) · 15.8 KB
/
basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/-
Copyright (c) 2022 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang
-/
import group_theory.monoid_localization
import ring_theory.localization.basic
/-!
# Localized Module
Given a commutative ring `R`, a multiplicative subset `S ⊆ R` and an `R`-module `M`, we can localize
`M` by `S`. This gives us a `localization S`-module.
## Main definitions
* `localized_module.r` : the equivalence relation defining this localization, namely
`(m, s) ≈ (m', s')` if and only if if there is some `u : S` such that `u • s' • m = u • s • m'`.
* `localized_module M S` : the localized module by `S`.
* `localized_module.mk` : the canonical map sending `(m, s) : M × S ↦ m/s : localized_module M S`
* `localized_module.lift_on` : any well defined function `f : M × S → α` respecting `r` descents to
a function `localized_module M S → α`
* `localized_module.lift_on₂` : any well defined function `f : M × S → M × S → α` respecting `r`
descents to a function `localized_module M S → localized_module M S`
* `localized_module.mk_add_mk` : in the localized module
`mk m s + mk m' s' = mk (s' • m + s • m') (s * s')`
* `localized_module.mk_smul_mk` : in the localized module, for any `r : R`, `s t : S`, `m : M`,
we have `mk r s • mk m t = mk (r • m) (s * t)` where `mk r s : localization S` is localized ring
by `S`.
* `localized_module.is_module` : `localized_module M S` is a `localization S`-module.
-/
namespace localized_module
universes u v
variables {R : Type u} [comm_semiring R] (M : Type v) [add_comm_monoid M] [module R M]
variables (S : submonoid R)
/--The equivalence relation on `M × S` where `(m1, s1) ≈ (m2, s2)` if and only if
for some (u : S), u * (s2 • m1 - s1 • m2) = 0-/
def r (p1 p2 : M × S) : Prop :=
match p1, p2 with
| ⟨m1, s1⟩, ⟨m2, s2⟩ := ∃ (u : S), u • s1 • m2 = u • s2 • m1
end
lemma r.is_equiv : is_equiv _ (r M S) :=
{ refl := λ ⟨m, s⟩, ⟨1, by rw [one_smul]⟩,
trans := λ ⟨m1, s1⟩ ⟨m2, s2⟩ ⟨m3, s3⟩ ⟨u1, hu1⟩ ⟨u2, hu2⟩, begin
use u1 * u2 * s2,
rw calc (u1 * u2 * s2) • s1 • m3
= (u1 * u2 * s2 * s1) • m3 : by simp only [mul_smul]
... = (u1 * s1 * (u2 * s2)) • m3 : by congr' 1; ext; simp only [submonoid.coe_mul]; ring
... = (u1 * s1) • u2 • s2 • m3 : by simp only [mul_smul]
... = (u1 * s1) • u2 • s3 • m2 : by rw [hu2]
... = (u1 * s1 * (u2 * s3)) • m2 : by simp only [mul_smul]
... = (u2 * s3 * (u1 * s1)) • m2 : by congr' 1; ext; simp only [submonoid.coe_mul]; ring
... = (u2 * s3) • u1 • s1 • m2 : by simp only [mul_smul]
... = (u2 * s3) • u1 • s2 • m1 : by rw [hu1]
... = ((u2 * s3) * u1 * s2) • m1 : by simp only [mul_smul],
rw [← mul_smul],
congr' 1,
ext,
simp only [submonoid.coe_mul],
ring
end,
symm := λ ⟨m1, s1⟩ ⟨m2, s2⟩ ⟨u, hu⟩, ⟨u, hu.symm⟩ }
instance r.setoid : setoid (M × S) :=
{ r := r M S,
iseqv := ⟨(r.is_equiv M S).refl, (r.is_equiv M S).symm, (r.is_equiv M S).trans⟩ }
/--
If `S` is a multiplicative subset of a ring `R` and `M` an `R`-module, then
we can localize `M` by `S`.
-/
@[nolint has_inhabited_instance]
def _root_.localized_module : Type (max u v) := quotient (r.setoid M S)
section
variables {M S}
/--The canonical map sending `(m, s) ↦ m/s`-/
def mk (m : M) (s : S) : localized_module M S :=
quotient.mk ⟨m, s⟩
lemma mk_eq {m m' : M} {s s' : S} : mk m s = mk m' s' ↔ ∃ (u : S), u • s • m' = u • s' • m :=
quotient.eq
@[elab_as_eliminator]
lemma induction_on {β : localized_module M S → Prop} (h : ∀ (m : M) (s : S), β (mk m s)) :
∀ (x : localized_module M S), β x := λ x,
begin
induction x using quotient.induction_on,
rcases x with ⟨m, s⟩,
exact h m s,
end
@[elab_as_eliminator]
lemma induction_on₂ {β : localized_module M S → localized_module M S → Prop}
(h : ∀ (m m' : M) (s s' : S), β (mk m s) (mk m' s')) : ∀ x y, β x y := λ x y,
begin
induction x using quotient.induction_on,
induction y using quotient.induction_on,
rcases ⟨x, y⟩ with ⟨⟨m, s⟩, ⟨m', s'⟩⟩,
convert h m m' s s',
end
/--If `f : M × S → α` respects the equivalence relation `localized_module.r`, then
`f` descents to a map `localized_module M S → α`.
-/
def lift_on {α : Type*} (x : localized_module M S) (f : M × S → α)
(wd : ∀ (p p' : M × S) (h1 : p ≈ p'), f p = f p') : α :=
quotient.lift_on x f wd
lemma lift_on_mk {α : Type*} {f : M × S → α}
(wd : ∀ (p p' : M × S) (h1 : p ≈ p'), f p = f p')
(m : M) (s : S) :
lift_on (mk m s) f wd = f ⟨m, s⟩ :=
by convert quotient.lift_on_mk f wd ⟨m, s⟩
/--If `f : M × S → M × S → α` respects the equivalence relation `localized_module.r`, then
`f` descents to a map `localized_module M S → localized_module M S → α`.
-/
def lift_on₂ {α : Type*} (x y : localized_module M S) (f : (M × S) → (M × S) → α)
(wd : ∀ (p q p' q' : M × S) (h1 : p ≈ p') (h2 : q ≈ q'), f p q = f p' q') : α :=
quotient.lift_on₂ x y f wd
lemma lift_on₂_mk {α : Type*} (f : (M × S) → (M × S) → α)
(wd : ∀ (p q p' q' : M × S) (h1 : p ≈ p') (h2 : q ≈ q'), f p q = f p' q')
(m m' : M) (s s' : S) :
lift_on₂ (mk m s) (mk m' s') f wd = f ⟨m, s⟩ ⟨m', s'⟩ :=
by convert quotient.lift_on₂_mk f wd _ _
instance : has_zero (localized_module M S) := ⟨mk 0 1⟩
lemma zero_mk (s : S) : mk (0 : M) s = 0 :=
mk_eq.mpr ⟨1, by rw [one_smul, smul_zero, smul_zero, one_smul]⟩
instance : has_add (localized_module M S) :=
{ add := λ p1 p2, lift_on₂ p1 p2 (λ x y, mk (y.2 • x.1 + x.2 • y.1) (x.2 * y.2)) $
λ ⟨m1, s1⟩ ⟨m2, s2⟩ ⟨m1', s1'⟩ ⟨m2', s2'⟩ ⟨u1, hu1⟩ ⟨u2, hu2⟩, mk_eq.mpr ⟨u1 * u2, begin
calc (u1 * u2) • (s1 * s2) • (s2' • m1' + s1' • m2')
= (u1 * u2) • (s1 * s2) • s2' • m1' + (u1 * u2) • (s1 * s2) • s1' • m2'
: by simp only [smul_add]
... = (u1 * u2 * (s1 * s2) * s2') • m1' + (u1 * u2 * (s1 * s2) * s1') • m2'
: by simp only [mul_smul]
... = ((u2 * s2 * s2') * (u1 * s1)) • m1' + (u1 * u2 * (s1 * s2) * s1') • m2'
: by congr' 2; ext; simp only [submonoid.coe_mul]; ring
... = (u2 * s2 * s2') • u1 • s1 • m1' + (u1 * u2 * (s1 * s2) * s1') • m2'
: by simp only [mul_smul]
... = (u2 * s2 * s2') • u1 • s1' • m1 + (u1 * u2 * (s1 * s2) * s1') • m2' : by rw [hu1]
... = ((u2 * s2 * s2') * u1 * s1') • m1 + (u1 * u2 * (s1 * s2) * s1') • m2'
: by simp only [mul_smul]
... = ((u1 * u2) * (s1' * s2') * s2) • m1 + (u1 * u2 * (s1 * s2) * s1') • m2'
: by congr' 2; ext; simp only [submonoid.coe_mul]; ring
... = (u1 * u2) • (s1' • s2') • s2 • m1 + (u1 * u2 * (s1 * s2) * s1') • m2'
: by congr' 1; simp [mul_smul]
... = (u1 * u2) • (s1' • s2') • s2 • m1 + ((u1 * s1 * s1') * (u2 * s2)) • m2'
: by congr' 2; ext; simp only [submonoid.coe_mul]; ring
... = (u1 * u2) • (s1' • s2') • s2 • m1 + (u1 * s1 * s1') • u2 • s2 • m2'
: by simp [mul_smul]
... = (u1 * u2) • (s1' • s2') • s2 • m1 + (u1 * s1 * s1') • u2 • s2' • m2 : by rw [hu2]
... = (u1 * u2) • (s1' • s2') • s2 • m1 + ((u1 * s1 * s1') * (u2 * s2')) • m2
: by simp [mul_smul]
... = (u1 * u2) • (s1' • s2') • s2 • m1 + ((u1 * u2) * (s1' * s2') * s1) • m2
: by congr' 2; ext; simp only [submonoid.coe_mul]; ring
... = (u1 * u2) • (s1' • s2') • s2 • m1 + (u1 * u2) • (s1' • s2') • s1 • m2
: by simp [mul_smul]
... = (u1 * u2) • (s1' * s2') • (s2 • m1 + s1 • m2) : by simp [smul_add],
end⟩ }
lemma mk_add_mk {m1 m2 : M} {s1 s2 : S} :
mk m1 s1 + mk m2 s2 = mk (s2 • m1 + s1 • m2) (s1 * s2) :=
mk_eq.mpr $ ⟨1, by dsimp only; rw [one_smul]⟩
lemma mk_zero (s : S) : mk (0 : M) s = 0 :=
mk_eq.mpr ⟨1, by simp only [smul_zero]⟩
lemma add_assoc' (x y z : localized_module M S) :
x + y + z = x + (y + z) :=
begin
induction x using localized_module.induction_on with mx sx,
induction y using localized_module.induction_on with my sy,
induction z using localized_module.induction_on with mz sz,
simp [mk_add_mk],
refine mk_eq.mpr ⟨1, _⟩,
rw [one_smul, one_smul],
congr' 1,
{ rw [mul_assoc] },
{ rw [mul_comm, add_assoc, mul_smul, mul_smul, ←mul_smul sx sz, mul_comm, mul_smul], },
end
lemma add_comm' (x y : localized_module M S) :
x + y = y + x :=
localized_module.induction_on₂ (λ m m' s s', by rw [mk_add_mk, mk_add_mk, add_comm, mul_comm]) x y
lemma zero_add' (x : localized_module M S) : 0 + x = x :=
induction_on (λ m s, by rw [← zero_mk s, mk_add_mk, smul_zero, zero_add, mk_eq];
exact ⟨1, by rw [one_smul, mul_smul, one_smul]⟩) x
lemma add_zero' (x : localized_module M S) : x + 0 = x :=
induction_on (λ m s, by rw [← zero_mk s, mk_add_mk, smul_zero, add_zero, mk_eq];
exact ⟨1, by rw [one_smul, mul_smul, one_smul]⟩) x
instance has_nat_scalar : has_scalar ℕ (localized_module M S) :=
{ smul := λ n, nat.rec_on n (λ x, 0) (λ m f x, x + f x) }
lemma nsmul_zero' (x : localized_module M S) : (0 : ℕ) • x = 0 :=
localized_module.induction_on (λ _ _, rfl) x
lemma nsmul_succ' (n : ℕ) (x : localized_module M S) :
n.succ • x = x + n • x :=
localized_module.induction_on (λ _ _, rfl) x
instance : add_comm_monoid (localized_module M S) :=
{ add := (+),
add_assoc := add_assoc',
zero := 0,
zero_add := zero_add',
add_zero := add_zero',
nsmul := (•),
nsmul_zero' := nsmul_zero',
nsmul_succ' := nsmul_succ',
add_comm := add_comm' }
instance : has_scalar (localization S) (localized_module M S) :=
{ smul := λ f x, localization.lift_on f (λ r s, lift_on x (λ p, mk (r • p.1) (s * p.2))
begin
rintros ⟨m1, t1⟩ ⟨m2, t2⟩ ⟨u, h⟩,
refine mk_eq.mpr ⟨u, _⟩,
dsimp only,
calc u • (s * t1) • r • m2
= ((u : R) * (s * t1) * r) • m2 : by simp only [mul_smul]; congr
... = ((s : R) * r * (u * t1)) • m2 : by congr' 1; ring
... = ((s : R) * r) • u • t1 • m2 : by simp only [mul_smul]; congr
... = ((s : R) * r) • u • t2 • m1 : by rw [h]
... = ((s : R) * r * (u * t2)) • m1 : by simp only [mul_smul]; congr
... = ((u : R) * (s * t2) * r) • m1 : by congr' 1; ring
... = u • (s * t2) • r • m1 : by simp only [mul_smul]; congr,
end) begin
induction x using localized_module.induction_on with m t,
rintros r r' s s' h,
dsimp only,
rw [lift_on_mk, lift_on_mk],
rw localization.r_iff_exists at h,
rcases h with ⟨u, eq1⟩,
rw mk_eq,
simp only at eq1 ⊢,
refine ⟨u, _⟩,
calc u • (s * t) • r' • m
= ((u : R) * (s * t) * r') • m : by simp only [mul_smul]; congr
... = ((t : R) * (r' * s * u)) • m : by congr' 1; ring
... = ((t : R) * (r * s' * u)) • m : by rw [eq1]
... = ((u : R) * (s' * t) * r) • m : by congr' 1; ring
... = u • (s' * t) • r • m : by simp only [mul_smul]; congr,
end }
lemma mk_smul_mk (r : R) (m : M) (s t : S) :
localization.mk r s • mk m t = mk (r • m) (s * t) :=
begin
unfold has_scalar.smul,
rw [localization.lift_on_mk, lift_on_mk],
end
lemma one_smul' (m : localized_module M S) :
(1 : localization S) • m = m :=
begin
induction m using localized_module.induction_on with m s,
rw [← localization.mk_one, mk_smul_mk, one_smul, one_mul],
end
lemma mul_smul' (x y : localization S) (m : localized_module M S) :
(x * y) • m = x • y • m :=
begin
induction x using localization.induction_on with data,
induction y using localization.induction_on with data',
rcases ⟨data, data'⟩ with ⟨⟨r, s⟩, ⟨r', s'⟩⟩,
induction m using localized_module.induction_on with m t,
rw [localization.mk_mul, mk_smul_mk, mk_smul_mk, mk_smul_mk, mul_smul, mul_assoc],
end
lemma smul_add' (x : localization S) (y z : localized_module M S) :
x • (y + z) = x • y + x • z :=
begin
induction x using localization.induction_on with data,
rcases data with ⟨r, u⟩,
induction y using localized_module.induction_on with m s,
induction z using localized_module.induction_on with n t,
dsimp only,
rw [mk_smul_mk, mk_smul_mk, mk_add_mk, mk_smul_mk, mk_add_mk],
refine mk_eq.mpr _,
refine ⟨1, _⟩,
rw [one_smul, one_smul],
calc (u * (s * t)) • ((u * t) • r • m + (u * s) • r • n)
= (u * (s * t)) • (u * t) • r • m + (u * (s * t)) • (u * s) • r • n : by rw [smul_add]
... = ((u : R) * (s * t) * (u * t) * r) • m + ((u : R) * (s * t) * (u * s) * r) • n
: by simp only [mul_smul]; congr
... = ((u : R) * s * (u * t) * r * t) • m + ((u : R) * s * (u * t) * r * s) • n
: by congr' 2; ring
... = ((u : R) * s * (u * t)) • r • t • m + (u * s * (u * t)) • r • s • n
: by simp only [mul_smul]; congr
... = (u * s * (u * t)) • r • (t • m + s • n) : by simp [smul_add]; congr,
end
lemma smul_zero' (x : localization S) :
x • (0 : localized_module M S) = 0 :=
begin
induction x using localization.induction_on with data,
rcases data with ⟨r, s⟩,
rw [←zero_mk s, mk_smul_mk, smul_zero, zero_mk, zero_mk],
end
lemma add_smul' (x y : localization S) (z : localized_module M S) :
(x + y) • z = x • z + y • z :=
begin
induction x using localization.induction_on with datax,
induction y using localization.induction_on with datay,
induction z using localized_module.induction_on with m t,
rcases ⟨datax, datay⟩ with ⟨⟨r, s⟩, ⟨r', s'⟩⟩,
rw [localization.add_mk, mk_smul_mk, mk_smul_mk, mk_smul_mk, mk_add_mk],
refine mk_eq.mpr ⟨1, _⟩,
rw [one_smul, one_smul],
dsimp only,
calc (s * s' * t) • ((s' * t) • r • m + (s * t) • r' • m)
= (s * s' * t) • (s' * t) • r • m + (s * s' * t) • (s * t) • r' • m : by rw [smul_add]
... = ((s : R) * s' * t * (s' * t) * r) • m + ((s : R) * s' * t * (s * t) * r') • m
: by simp only [mul_smul]; congr
... = ((s : R) * t * (s' * t) * s * r') • m + ((s : R) * t * (s' * t) * s' * r) • m
: by rw add_comm; congr' 2; ring
... = (((s : R) * t * (s' * t) * s * r') + ((s : R) * t * (s' * t) * s' * r)) • m
: by rw add_smul
... = ((s : R) * t * (s' * t) * (s * r' + s' * r)) • m : by congr' 2 ; ring
... = (s * t * (s' * t)) • ((s : R) * r' + (s' : R) * r) • m : by simp only [mul_smul]; congr
... = (s * t * (s' * t)) • ((s : R) * r' + (s' : R) * r) • m : by simp [add_smul]; congr,
end
lemma zero_smul' (x : localized_module M S) :
(0 : localization S) • x = 0 :=
begin
induction x using localized_module.induction_on with m s,
rw [← localization.mk_zero s, mk_smul_mk, zero_smul, zero_mk],
end
instance is_module : module (localization S) (localized_module M S) :=
{ smul := (•),
one_smul := one_smul',
mul_smul := mul_smul',
smul_add := smul_add',
smul_zero := smul_zero',
add_smul := add_smul',
zero_smul := zero_smul' }
end
end localized_module
namespace localized_module
universes u v
variables {R : Type u} [comm_semiring R] (M : Type v) [add_comm_group M] [module R M]
variables (S : submonoid R)
instance : has_neg (localized_module M S) :=
⟨λ x, localized_module.lift_on x (λ p, mk (-p.1) p.2) $ λ ⟨m, s⟩ ⟨n, t⟩ ⟨u, hu⟩,
mk_eq.mpr ⟨u, by simp only [smul_neg, hu]⟩⟩
lemma neg_mk (m : M) (s : S) : - mk m s = mk (-m) s := rfl
instance : add_comm_group (localized_module M S) :=
{ neg := λ x, localized_module.lift_on x (λ p, mk (-p.1) p.2) $ λ ⟨m, s⟩ ⟨n, t⟩ ⟨u, hu⟩,
mk_eq.mpr ⟨u, by simp only [smul_neg, hu]⟩,
add_left_neg := λ x, begin
induction x using localized_module.induction_on with m s,
rw [neg_mk, mk_add_mk, smul_neg, add_left_neg, mk_zero],
end,
..(_ : add_comm_monoid (localized_module M S))}
end localized_module