-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_OutFoV_scan.py
2474 lines (1750 loc) · 74 KB
/
do_OutFoV_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import os
from astropy.table import Table
from astropy.io import fits
from numba import jit, njit, prange
from scipy import interpolate
from math import erf
import healpy as hp
import pandas as pd
import argparse
import logging, traceback
from StructFunc import get_full_struct_manager
from flux_models import Plaw_Flux, Cutoff_Plaw_Flux, Band_Flux
from config import rt_dir, fp_dir, solid_angle_dpi_fname, drm_dir, bright_source_table_fname
from logllh_ebins_funcs import log_pois_prob, get_eflux, get_gammaln
from event2dpi_funcs import det2dpis, mask_detxy
from models import Model
from minimizers import NLLH_DualAnnealingMin, NLLH_ScipyMinimize, NLLH_ScipyMinimize_Wjacob
from coord_conv_funcs import convert_radec2imxy, convert_imxy2radec,\
convert_radec2batxyz, convert_radec2thetaphi
from ray_trace_funcs import RayTraces, FootPrints
from do_bkg_estimation_wPSs_mp import get_srcs_infov
def cli():
parser = argparse.ArgumentParser()
parser.add_argument('--evfname', type=str,\
help="Event data file",
default=None)
parser.add_argument('--dmask', type=str,\
help="Detmask fname",
default=None)
parser.add_argument('--attfname', type=str,\
help="attitude fname",
default=None)
parser.add_argument('--job_id', type=int,\
help="ID to tell it what seeds to do",\
default=-1)
parser.add_argument('--Njobs', type=int,\
help="Total number of jobs submitted",\
default=64)
parser.add_argument('--work_dir', type=str,\
help="work directory",
default=None)
parser.add_argument('--log_fname', type=str,\
help="log file name",
default='out_fov_scan')
parser.add_argument('--Nside', type=int,\
help="Healpix Nside",\
default=2**4)
parser.add_argument('--trig_time', type=float,\
help="Trigger time",\
default=None)
parser.add_argument('--Ntdbls', type=int,\
help="Number of times to double duration size",\
default=3)
parser.add_argument('--min_dur', type=float,\
help="Trigger time",\
default=0.256)
parser.add_argument('--min_dt', type=float,\
help="Min time offset from trigger time to start at",\
default=1.25)
parser.add_argument('--max_dt', type=float,\
help="Min time offset from trigger time to start at",\
default=3.75)
parser.add_argument('--bkg_dt0', type=float,\
help="Time offset from trigger time to start bkg at",\
default=6.0)
parser.add_argument('--bkg_dur', type=float,\
help="Duration to use for bkg",\
default=4.0)
args = parser.parse_args()
return args
def detxy2batxy(detx, dety):
batx = 0.42*detx - (285*.42)/2
baty = 0.42*dety - (172*.42)/2
return batx, baty
def batxy2detxy(batx, baty):
detx = (batx + (285*.42)/2)/0.42
dety = (baty + (172*.42)/2)/0.42
return detx, dety
def bldmask2batxys(bl_dmask):
detys, detxs = np.where(bl_dmask)
return detxy2batxy(detxs, detys)
@njit(cache=True)
def shift_pha_bins(spec, pha_bins0, pha_bins1, new_pha_bins0, new_pha_bins1):
new_spec = np.zeros_like(new_pha_bins0)
for i in range(len(new_spec)):
e0 = new_pha_bins0[i]
e1 = new_pha_bins1[i]
bl = (pha_bins0>=e0)&(pha_bins1<=e1)
new_spec[i] += np.sum(spec[bl])
bl = (pha_bins0<e0)&(pha_bins1>e0)
if np.sum(bl) > 0:
ind = np.where(bl)[0][0]
dE = pha_bins1[ind] - pha_bins0[ind]
frac_in_bin = (pha_bins1[ind] - e0)/dE
new_spec[i] += frac_in_bin*spec[ind]
bl = (pha_bins0<e1)&(pha_bins1>e1)
if np.sum(bl) > 0:
ind = np.where(bl)[0][0]
dE = pha_bins1[ind] - pha_bins0[ind]
frac_in_bin = (e1 - pha_bins0[ind])/dE
new_spec[i] += frac_in_bin*spec[ind]
return new_spec
@njit(cache=True)
def shift_flor_dpi_pha_bins(flor_dpi, pha_bins0, pha_bins1, new_pha_bins0, new_pha_bins1):
Nphabins_new = new_pha_bins0.size
Ndets = flor_dpi.shape[0]
NphotonEs = flor_dpi.shape[1]
new_shp = (Ndets,NphotonEs,Nphabins_new)
new_flor_dpi = np.zeros(new_shp)
for i in range(Ndets):
for j in range(NphotonEs):
new_flor_dpi[i,j] += shift_pha_bins(flor_dpi[i,j], pha_bins0, pha_bins1,\
new_pha_bins0, new_pha_bins1)
return new_flor_dpi
def shift_resp_tab_pha_bins(resp_tab, pha_bins0, pha_bins1, new_pha_bins0, new_pha_bins1):
new_tab = Table()
new_tab['ENERG_LO'] = np.copy(resp_tab['ENERG_LO'])
new_tab['ENERG_HI'] = np.copy(resp_tab['ENERG_HI'])
NphotonEs = len(resp_tab['ENERG_LO'])
for cname in resp_tab.colnames:
if 'ENERG' in cname:
continue
new_resp = np.zeros((NphotonEs, len(new_pha_bins0)))
for i in range(NphotonEs):
new_resp[i] += shift_pha_bins(resp_tab[cname][i].astype(np.float), pha_bins0.astype(np.float),\
pha_bins1.astype(np.float),\
new_pha_bins0.astype(np.float), new_pha_bins1.astype(np.float))
new_tab[cname] = new_resp
return new_tab
def get_dist2(x0,y0,z0,x1,y1,z1):
return (x1-x0)**2 + (y1-y0)**2 + (z1-z0)**2
def get_dist(x0,y0,z0,x1,y1,z1):
return np.sqrt(get_dist2(x0,y0,z0,x1,y1,z1))
def get_dist_wts(x0,y0,z0,x1,y1,z1):
wts = 1./get_dist2(x0,y0,z0,x1,y1,z1)
wts /= np.sum(wts)
return wts
def get_sa_divA(x0,y0,z0,x1,y1,z1):
dist3 = get_dist2(x0,y0,z0,x1,y1,z1)**1.5
return np.abs(z1-z0)/dist3
def get_sa_wts(x0,y0,z0,x1,y1,z1):
wts = get_sa_divA(x0,y0,z0,x1,y1,z1)
wts /= np.sum(wts)
return wts
class Comp_Resp_Obj(object):
def __init__(self, batxs, batys, batzs, struct4comp):
self.ndets = len(batxs)
self.batxs = batxs
self.batys = batys
self.batzs = batzs
self.Ne = struct4comp.Ne
self.struct_obj = struct4comp
self.ncomp_pnts = len(self.struct_obj.batxs)
self.comp_batxs = self.struct_obj.batxs
self.comp_batys = self.struct_obj.batys
self.comp_batzs = self.struct_obj.batzs
self.calc_inds_wts4comp_dets()
def calc_inds_wts4comp_dets(self, dmax=16):
self.wts_list = []
self.inds_list = []
for i in range(self.ndets):
dists = get_dist(self.comp_batxs, self.comp_batys, self.comp_batzs,\
self.batxs[i], self.batys[i], self.batzs[i])
bl = (dists<=dmax)
wts = get_sa_wts(self.comp_batxs[bl], self.comp_batys[bl],\
self.comp_batzs[bl], self.batxs[i],\
self.batys[i], self.batzs[i])
inds = np.where(bl)[0]
self.wts_list.append(wts)
self.inds_list.append(inds)
def set_theta_phi(self, theta, phi):
self.struct_obj.set_theta_phi(theta, phi)
self.struct_obj.calc_tot_rhomu_dist()
self.calc_trans()
def calc_trans(self):
self.trans = np.zeros((self.ndets, self.Ne))
self.comp_trans = np.zeros((self.ncomp_pnts, self.Ne))
self.comp_trans[:self.ncomp_pnts] += self.struct_obj.get_trans()
print np.shape(self.trans[0]), np.shape(self.wts_list[0]),\
np.shape(self.comp_trans[self.inds_list[0],:])
print np.shape(np.sum(self.comp_trans[self.inds_list[0],:]*self.wts_list[0][:,np.newaxis],axis=0))
for i in range(self.ndets):
self.trans[i] += np.sum(self.comp_trans[self.inds_list[i],:]*self.wts_list[i][:,np.newaxis],axis=0)
def get_trans(self):
return self.trans
def get_dual_struct_obj(Ephotons):
dual_xs = []
dual_ys = []
for bi in range(8):
x_b = -52.92 + bi*15.12
y_b = 23.555
for i in range(2):
x = x_b - 3.78 + i*7.56
for j in range(4):
y = y_b - 18.935 + j*9.24
dual_xs.append(x)
dual_ys.append(y)
for bi in range(8):
x_b = -52.92 + bi*15.12
y_b = -23.555
for i in range(2):
x = x_b -(- 3.78 + i*7.56)
for j in range(4):
y = y_b -(- 18.935 + j*9.24)
dual_xs.append(x)
dual_ys.append(y)
dual_xs = np.array(dual_xs)
dual_ys = np.array(dual_ys)
print len(dual_xs), len(dual_ys)
BATZ_offset = 35.799
dual_elec_x_halfwidth = 3.55
dual_elec_y_halfwidth = 4.41
dual_elec_z0 = -3.725 -32.612 + BATZ_offset + 1.15 - 1.06 - 1.865
dual_elec_z1 = -3.725 -32.612 + BATZ_offset + 1.15 - 1.06 + 1.865
dual_elec_zmid = -3.725 -32.612 + BATZ_offset + 1.15 - 1.06
dual_elec_z_halfwidth = 1.865
# for each dual lets do 8 pnts (+/- x_hw/2, +/- y_hw/2, +/- z_hw/2)
batxs4duals = []
batys4duals = []
batzs4duals = []
Nduals = len(dual_xs)
for ii in range(Nduals):
dualx = dual_xs[ii]
dualy = dual_ys[ii]
for i in range(2):
x = dualx - dual_elec_x_halfwidth/2. + i*dual_elec_x_halfwidth
for j in range(2):
y = dualy - dual_elec_y_halfwidth/2. + j*dual_elec_y_halfwidth
for k in range(2):
z = dual_elec_zmid - dual_elec_z_halfwidth/2. + k*dual_elec_z_halfwidth
batxs4duals.append(x)
batys4duals.append(y)
batzs4duals.append(z)
batxs4duals = np.array(batxs4duals)
batys4duals = np.array(batys4duals)
batzs4duals = np.array(batzs4duals)
print len(batxs4duals)
dual_struct_obj = get_full_struct_manager(Es=Ephotons)
dual_struct_obj.set_batxyzs(batxs4duals, batys4duals, batzs4duals)
return dual_struct_obj
detxs_by_sand0 = np.arange(0, 286-15, 18)
detxs_by_sand1 = detxs_by_sand0 + 15
print len(detxs_by_sand0)
detys_by_sand0 = np.arange(0, 173-7, 11)
detys_by_sand1 = detys_by_sand0 + 7
print len(detys_by_sand0)
detxs_in_cols_not_edges = [np.arange(detxs_by_sand0[i]+1, detxs_by_sand1[i], 1, dtype=np.int)\
for i in range(16)]
detys_in_rows_not_edges = [np.arange(detys_by_sand0[i]+1, detys_by_sand1[i], 1, dtype=np.int)\
for i in range(16)]
print detxs_in_cols_not_edges
dpi_shape = (173, 286)
detxax = np.arange(286, dtype=np.int)
detyax = np.arange(173, dtype=np.int)
detx_dpi, dety_dpi = np.meshgrid(detxax, detyax)
print np.shape(detx_dpi), np.shape(dety_dpi)
print np.max(detx_dpi), np.max(dety_dpi)
def get_detxys_from_colrows(col0, col1, row0, row1, orientation='NonEdges'):
if orientation == 'NonEdges':
good_detxs = np.array(detxs_in_cols_not_edges[col0:col1])
good_detys = np.array(detys_in_rows_not_edges[row0:row1])
elif orientation == 'left':
good_detxs = np.array(detxs_by_sand0[col0:col1])
good_detys = np.array(detys_in_rows_not_edges[row0:row1])
good_detys = np.append(good_detys, np.array(detys_by_sand1[row0:row1]))
elif orientation == 'top':
good_detxs = np.array(detxs_in_cols_not_edges[col0:col1])
good_detys = np.array(detys_by_sand1[row0:row1])
elif orientation == 'bot':
good_detxs = np.array(detxs_in_cols_not_edges[col0:col1])
good_detxs = np.append(good_detxs, np.array(detxs_by_sand0[col0:col1]))
good_detys = np.array(detys_by_sand0[row0:row1])
elif orientation == 'right':
good_detxs = np.array(detxs_by_sand1[col0:col1])
good_detys = np.array(detys_in_rows_not_edges[row0:row1])
good_detys = np.append(good_detys, np.array(detys_by_sand1[row0:row1]))
good_detys = np.append(good_detys, np.array(detys_by_sand0[row0:row1]))
else:
print "bad orientation"
blx = np.isin(detx_dpi, good_detxs)
bly = np.isin(dety_dpi, good_detys)
bl = blx&bly
inds = np.where(bl)
return inds
def rot_col_row_orientation(col0, col1, row0, row1, orientation, phi_rot):
if phi_rot < 0:
phi_rot = phi_rot + 2*np.pi
if (phi_rot >= np.pi/4) and (phi_rot < np.pi/2):
# bot is strong
# right is weak
new_row0 = 16 - col1
new_row1 = 16 - col0
new_col0 = 16 - row1
new_col1 = 16 - row0
if orientation == 'right':
new_orientation = 'bot'
elif orientation == 'bot':
new_orientation = 'right'
else:
new_orientation = orientation
elif (phi_rot >= np.pi/2) and (phi_rot < 3*np.pi/4):
# bot is strong
# left is weak
new_row0 = 16 - col1
new_row1 = 16 - col0
new_col0 = row0
new_col1 = row1
if orientation == 'right':
new_orientation = 'bot'
elif orientation == 'bot':
new_orientation = 'left'
elif orientation == 'left':
new_orientation = 'right'
else:
new_orientation = orientation
elif (phi_rot >= 3*np.pi/4) and (phi_rot < np.pi):
# left is strong
# bot is weak
new_row0 = row0
new_row1 = row1
new_col0 = 16 - col1
new_col1 = 16 - col0
if orientation == 'right':
new_orientation = 'left'
elif orientation == 'left':
new_orientation = 'right'
else:
new_orientation = orientation
elif (phi_rot >= np.pi) and (phi_rot < 5*np.pi/4):
# left is strong
# top is weak
new_row0 = 16 - row1
new_row1 = 16 - row0
new_col0 = 16 - col1
new_col1 = 16 - col0
if orientation == 'right':
new_orientation = 'left'
elif orientation == 'bot':
new_orientation = 'top'
elif orientation == 'left':
new_orientation = 'right'
elif orientation == 'top':
new_orientation = 'bot'
else:
new_orientation = orientation
elif (phi_rot >= 5*np.pi/4) and (phi_rot < 6*np.pi/4):
# top is strong
# left is weak
new_row0 = col0
new_row1 = col1
new_col0 = row0
new_col1 = row1
if orientation == 'right':
new_orientation = 'top'
elif orientation == 'bot':
new_orientation = 'left'
elif orientation == 'left':
new_orientation = 'right'
elif orientation == 'top':
new_orientation = 'bot'
else:
new_orientation = orientation
elif (phi_rot >= 6*np.pi/4) and (phi_rot < 7*np.pi/4):
# top is strong
# right is weak
new_row0 = col0
new_row1 = col1
new_col0 = 16-row1
new_col1 = 16-row0
if orientation == 'right':
new_orientation = 'top'
elif orientation == 'bot':
new_orientation = 'right'
elif orientation == 'top':
new_orientation = 'bot'
else:
new_orientation = orientation
elif (phi_rot >= 7*np.pi/4) and (phi_rot < 8*np.pi/4):
# right is strong
# top is weak
new_row0 = 16 - row1
new_row1 = 16 - row0
new_col0 = col0
new_col1 = col1
if orientation == 'bot':
new_orientation = 'top'
elif orientation == 'top':
new_orientation = 'bot'
else:
new_orientation = orientation
else:
new_orientation = orientation
new_row0 = row0
new_row1 = row1
new_col0 = col0
new_col1 = col1
return new_col0, new_col1, new_row0, new_row1, new_orientation
def resp_tab2resp_dpis(resp_tab, phi_rot=0.0):
line_cnames = [cname for cname in resp_tab.colnames if (not 'ENERG' in cname) and (not 'comp' in cname)]
comp_cnames = [cname for cname in resp_tab.colnames if (not 'ENERG' in cname) and ('comp' in cname)]
NphotonEs, Nphabins = resp_tab[line_cnames[0]].shape
lines_resp_dpi = np.zeros((173, 286, NphotonEs, Nphabins))
for cname in line_cnames:
cname_list = cname.split('_')
col0 = int(cname_list[-5])
col1 = int(cname_list[-4])
row0 = int(cname_list[-2])
row1 = int(cname_list[-1])
orientation = cname_list[0]
new_col0, new_col1, new_row0, new_row1, new_orientation =\
rot_col_row_orientation(col0, col1, row0, row1, orientation, phi_rot)
det_inds = get_detxys_from_colrows(new_col0, new_col1, new_row0,\
new_row1, orientation=new_orientation)
lines_resp_dpi[det_inds[0],det_inds[1],:,:] = resp_tab[cname].data.copy()
comp_resp_dpi = np.zeros((173, 286, NphotonEs, Nphabins))
for cname in comp_cnames:
cname_list = cname.split('_')
col0 = int(cname_list[-6])
col1 = int(cname_list[-5])
row0 = int(cname_list[-3])
row1 = int(cname_list[-2])
orientation = cname_list[0]
new_col0, new_col1, new_row0, new_row1, new_orientation =\
rot_col_row_orientation(col0, col1, row0, row1, orientation, phi_rot)
det_inds = get_detxys_from_colrows(new_col0, new_col1, new_row0,\
new_row1, orientation=new_orientation)
comp_resp_dpi[det_inds[0],det_inds[1],:,:] = resp_tab[cname].data.copy()
return lines_resp_dpi, comp_resp_dpi
def get_resp_arr(drm_dir):
fnames = np.array([fn for fn in os.listdir(drm_dir) if 'drm_' in fn])
thetas = np.array([float(fn.split('_')[2]) for fn in fnames])
phis = np.array([float(fn.split('_')[4]) for fn in fnames])
dtp = [('theta', np.float),('phi', np.float),('fname',fnames.dtype)]
drm_arr = np.empty(len(thetas), dtype=dtp)
drm_arr['theta'] = thetas
drm_arr['phi'] = phis
drm_arr['fname'] = fnames
return drm_arr
class ResponseDPI(object):
def __init__(self, resp_fname, pha_emins, pha_emaxs, phi0, bl_dmask):
print "initing ResponseDPI, with fname"
print resp_fname
self.orig_resp_tab = Table.read(resp_fname)
self.pha_tab = Table.read(resp_fname, hdu='EBOUNDS')
self.orig_pha_emins = self.pha_tab['E_MIN']
self.orig_pha_emaxs = self.pha_tab['E_MAX']
self.photonEmins = self.orig_resp_tab['ENERG_LO']
self.photonEmaxs = self.orig_resp_tab['ENERG_HI']
self.photonEs = (self.photonEmins + self.photonEmaxs)/2.
self.NphotonEs = len(self.photonEs)
self.phi0 = phi0 # should be in radians
self.ndets = np.sum(bl_dmask)
self.bl_dmask = bl_dmask
self.set_pha_bins(pha_emins, pha_emaxs)
self.mk_resp_dpis()
def set_pha_bins(self, pha_emins, pha_emaxs):
self.pha_emins = pha_emins
self.pha_emaxs = pha_emaxs
self.Nphabins = len(self.pha_emins)
self.resp_tab = shift_resp_tab_pha_bins(self.orig_resp_tab, self.orig_pha_emins,\
self.orig_pha_emaxs, self.pha_emins,\
self.pha_emaxs)
def set_phi0(self, phi0):
if np.abs(phi0 - self.phi0) > 1e-2:
self.phi0 = phi0
self.mk_resp_dpis()
def mk_resp_dpis(self):
lines_resp_dpis, comp_resp_dpis = resp_tab2resp_dpis(self.resp_tab, phi_rot=self.phi0)
self.lines_resp_dpis = lines_resp_dpis[self.bl_dmask]
self.comp_resp_dpis = comp_resp_dpis[self.bl_dmask]
def get_lines_resp_dpis(self):
return self.lines_resp_dpis
def get_comp_resp_dpis(self):
return self.comp_resp_dpis
def get_flor_intp_inds_wts(batxs, batys):
detxax = np.arange(-1,286+2,8, dtype=np.int)
detyax = np.arange(-2,173+2,8, dtype=np.int)
batxax, batyax = detxy2batxy(detxax, detyax)
flor_detx_dpi, flor_dety_dpi = np.meshgrid(detxax, detyax)
shp = flor_detx_dpi.shape
flor_batxs, flor_batys = detxy2batxy(flor_detx_dpi.ravel(), flor_dety_dpi.ravel())
x0inds = np.digitize(batxs, batxax) - 1
x1inds = x0inds + 1
y0inds = np.digitize(batys, batyax) - 1
y1inds = y0inds + 1
x0s = batxax[x0inds]
x1s = batxax[x1inds]
dxs = x1s - x0s
x0wts = (x1s - batxs)/dxs
x1wts = (batxs - x0s)/dxs
y0s = batyax[y0inds]
y1s = batyax[y1inds]
dys = y1s - y0s
y0wts = (y1s - batys)/dys
y1wts = (batys - y0s)/dys
inds00 = np.ravel_multi_index((y0inds,x0inds), shp)
inds01 = np.ravel_multi_index((y0inds,x1inds), shp)
inds10 = np.ravel_multi_index((y1inds,x0inds), shp)
inds11 = np.ravel_multi_index((y1inds,x1inds), shp)
inds = [inds00, inds01, inds10, inds11]
wts = [y0wts*x0wts, y0wts*x1wts, y1wts*x0wts, y1wts*x1wts]
return inds, wts
@njit(cache=True)
def flor_resp2dpis(flor_resp, flor_inds, flor_wts):
ndets = len(flor_inds[0])
NphotonEs = flor_resp.shape[1]
Nphabins = flor_resp.shape[2]
flor_dpis = np.zeros((ndets, NphotonEs, Nphabins))
for i in range(4):
for j in range(ndets):
flor_dpis[j] += flor_resp[flor_inds[i][j]]*(flor_wts[i][j])
return flor_dpis
class FlorResponseDPI(object):
def __init__(self, resp_dname, pha_tab, pha_emins, pha_emaxs, bl_dmask, Nside=2**3, NphotonEs=187):
self.resp_dname = resp_dname
self.pha_tab = pha_tab
self.orig_pha_emins = self.pha_tab['E_MIN'].astype(np.float)
self.orig_pha_emaxs = self.pha_tab['E_MAX'].astype(np.float)
self.pha_emins = pha_emins
self.pha_emaxs = pha_emaxs
self.Nphabins = len(pha_emins)
self.NphotonEs = NphotonEs
self.ndets = np.sum(bl_dmask)
self.bl_dmask = bl_dmask
self.batxs, self.batys = bldmask2batxys(self.bl_dmask)
self.flor_inds, self.flor_wts = get_flor_intp_inds_wts(self.batxs, self.batys)
self.orig_ndets = 851
self.Nside = Nside
self.resp_dict = {} # hp inds will be the keys
def set_theta_phi(self, theta, phi):
self.phi = phi
self.theta = theta
self.lat = 90.0 - self.theta
self.hp_inds2use, self.hp_wts = hp.get_interp_weights(self.Nside, self.phi, self.lat, lonlat=True)
self.calc_resp_dpi()
def open_new_file(self, hp_ind):
fname = 'hp_order_3_ind_%d_.npy'%(hp_ind)
resp_arr = np.load(os.path.join(self.resp_dname,fname))
self.resp_dict[hp_ind] = shift_flor_dpi_pha_bins(resp_arr, self.orig_pha_emins,\
self.orig_pha_emaxs,\
self.pha_emins, self.pha_emaxs)
def calc_resp_dpi(self):
resp_dpi0 = np.zeros((self.orig_ndets,self.NphotonEs,self.Nphabins))
for hp_ind,wt in zip(self.hp_inds2use,self.hp_wts):
if not hp_ind in self.resp_dict.keys():
self.open_new_file(hp_ind)
resp_dpi0 += wt*self.resp_dict[hp_ind]
self.resp_dpi = flor_resp2dpis(resp_dpi0, self.flor_inds, self.flor_wts)
def get_resp_dpi(self):
return self.resp_dpi
class FlorResponseDPI(object):
def __init__(self, resp_dname, pha_tab, pha_emins, pha_emaxs, bl_dmask, Nside=2**3, NphotonEs=187):
self.resp_dname = resp_dname
self.pha_tab = pha_tab
self.orig_pha_emins = self.pha_tab['E_MIN'].astype(np.float)
self.orig_pha_emaxs = self.pha_tab['E_MAX'].astype(np.float)
self.pha_emins = pha_emins
self.pha_emaxs = pha_emaxs
self.Nphabins = len(pha_emins)
self.NphotonEs = NphotonEs
self.ndets = np.sum(bl_dmask)
self.bl_dmask = bl_dmask
self.batxs, self.batys = bldmask2batxys(self.bl_dmask)
self.flor_inds, self.flor_wts = get_flor_intp_inds_wts(self.batxs, self.batys)
self.orig_ndets = 851
fname = '/storage/work/jjd330/local/bat_data/OutFoVbursts/GRB131014A/flor_Aeff_adjust.npz'
ratio_file = np.load(fname)
self.sn_ratios = ratio_file['sn_ratios']
self.ta_ratios = ratio_file['ta_ratios']
self.pb_ratios = ratio_file['pb_ratios']
self.Nside = Nside
self.resp_dict = {} # hp inds will be the keys
def set_theta_phi(self, theta, phi):
self.phi = phi
self.theta = theta
self.lat = 90.0 - self.theta
self.hp_inds2use, self.hp_wts = hp.get_interp_weights(self.Nside, self.phi, self.lat, lonlat=True)
self.calc_resp_dpi()
def open_new_file(self, hp_ind):
fname = 'hp_order_3_ind_%d_.npy'%(hp_ind)
resp_arr = np.load(os.path.join(self.resp_dname,fname))
sn_inds = np.arange(1,13,dtype=np.int)
ta_inds = np.arange(14,29,dtype=np.int)
pb_inds = np.arange(29,39,dtype=np.int)
for sn_ind in sn_inds:
resp_arr[:,:,sn_ind] *= self.sn_ratios
for ta_ind in ta_inds:
resp_arr[:,:,ta_ind] *= self.ta_ratios
for pb_ind in pb_inds:
resp_arr[:,:,pb_ind] *= self.pb_ratios
self.resp_dict[hp_ind] = shift_flor_dpi_pha_bins(resp_arr, self.orig_pha_emins,\
self.orig_pha_emaxs,\
self.pha_emins, self.pha_emaxs)
def calc_resp_dpi(self):
resp_dpi0 = np.zeros((self.orig_ndets,self.NphotonEs,self.Nphabins))
for hp_ind,wt in zip(self.hp_inds2use,self.hp_wts):
if not hp_ind in self.resp_dict.keys():
self.open_new_file(hp_ind)
resp_dpi0 += wt*self.resp_dict[hp_ind]
self.resp_dpi = flor_resp2dpis(resp_dpi0, self.flor_inds, self.flor_wts)
# for sn_ind in sn_inds:
# self.resp_dpi[:,:,sn_ind] *= self.sn_ratios
# for ta_ind in ta_inds:
# self.resp_dpi[:,:,ta_ind] *= self.ta_ratios
# for pb_ind in pb_inds:
# self.resp_dpi[:,:,pb_ind] *= self.pb_ratios
def get_resp_dpi(self):
return self.resp_dpi
class ResponseOutFoV(object):
def __init__(self, resp_dname, pha_emins, pha_emaxs, bl_dmask):
self.resp_dname = resp_dname
self.resp_arr = get_resp_arr(self.resp_dname)
self.thetas = np.unique(self.resp_arr['theta'])
tab = Table.read(os.path.join(self.resp_dname, self.resp_arr['fname'][0]))
pha_tab = Table.read(os.path.join(self.resp_dname, self.resp_arr['fname'][0]), hdu=2)
self.PhotonEmins = tab['ENERG_LO']
self.PhotonEmaxs = tab['ENERG_HI']
self.PhotonEs = ((self.PhotonEmins + self.PhotonEmaxs)/2.).astype(np.float)
self.NphotonEs = len(self.PhotonEs)
self.pha_emins = pha_emins
self.pha_emaxs = pha_emaxs
self.Nphabins = len(pha_emins)
# self.NphotonEs = NphotonEs
self.ndets = np.sum(bl_dmask)
self.bl_dmask = bl_dmask
self.batxs, self.batys = bldmask2batxys(self.bl_dmask)
self.batzs = 3.087 + np.zeros(self.ndets)
# self.resp_dpi_shape = (173, 286, self.NphotonEs, self.Nphabins)
self.resp_dpi_shape = (self.ndets, self.NphotonEs, self.Nphabins)
self.resp_files = {}
self.full_struct = get_full_struct_manager(Es=self.PhotonEs)
self.full_struct.set_batxyzs(self.batxs, self.batys, self.batzs)
dual_struct = get_dual_struct_obj(self.PhotonEs)
self.comp_obj = Comp_Resp_Obj(self.batxs, self.batys, self.batzs, dual_struct)
self.flor_resp_obj = FlorResponseDPI('/gpfs/scratch/jjd330/bat_data/flor_resps/',\
pha_tab, self.pha_emins, self.pha_emaxs,\
self.bl_dmask, NphotonEs=self.NphotonEs)
def set_theta_phi(self, theta, phi):
# use radians or degs ?
self.theta = theta
self.phi = phi
self.thetas2use, self.phis2use, self.wts = self.get_intp_theta_phi_wts(self.theta, self.phi)
self.inds4intp = []
for i in range(len(self.wts)):
ind = np.where(np.isclose(self.thetas2use[i],self.resp_arr['theta'])&\
np.isclose(self.phis2use[i],self.resp_arr['phi']))[0][0]
self.inds4intp.append(ind)
self.full_struct.set_theta_phi(np.radians(self.theta), np.radians(self.phi))
self.lines_trans_dpis = self.full_struct.get_trans()
if theta > 90.0:
self.comp_obj.set_theta_phi(np.radians(self.theta), np.radians(self.phi))
self.comp_trans_dpis = self.comp_obj.get_trans()
else:
self.comp_trans_dpis = self.lines_trans_dpis
self.flor_resp_obj.set_theta_phi(self.theta, self.phi)
self.calc_resp_dpis()
self.calc_tot_resp_dpis()
def open_resp_file_obj(self, fname):
resp_file_obj = ResponseDPI(os.path.join(self.resp_dname,fname),\
self.pha_emins, self.pha_emaxs,\
np.radians(self.phi), self.bl_dmask)
self.resp_files[fname] = resp_file_obj
def calc_resp_dpis(self):
self.lines_resp_dpis = np.zeros(self.resp_dpi_shape)
self.comp_resp_dpis = np.zeros(self.resp_dpi_shape)
for i in range(len(self.wts)):
k = self.resp_arr['fname'][self.inds4intp[i]]
if not k in self.resp_files.keys():
self.open_resp_file_obj(k)
self.lines_resp_dpis += self.wts[i]*self.resp_files[k].get_lines_resp_dpis()
self.comp_resp_dpis += self.wts[i]*self.resp_files[k].get_comp_resp_dpis()
def calc_tot_resp_dpis(self):
lines_dpi = self.lines_resp_dpis*(self.lines_trans_dpis[:,:,np.newaxis])
comp_dpi = self.comp_resp_dpis*(self.comp_trans_dpis[:,:,np.newaxis])
self.non_flor_resp_dpi = lines_dpi + comp_dpi
self.flor_resp_dpi = self.flor_resp_obj.get_resp_dpi()
self.tot_resp_dpis = self.non_flor_resp_dpi + self.flor_resp_dpi
def get_lines_resp_dpis(self):
return self.lines_resp_dpis
def get_comp_resp_dpis(self):
return self.comp_resp_dpis
def get_flor_resp_dpis(self):
return self.flor_resp_obj.get_resp_dpi()
def get_tot_resp_dpis(self):
return self.tot_resp_dpis
def get_rate_dpis_from_photon_fluxes(self, photon_fluxes):
rate_dpis = np.zeros((self.ndets,self.Nphabins))
for j in range(self.Nphabins):
rate_dpis[:,j] += np.sum(photon_fluxes*self.tot_resp_dpis[:,:,j],axis=1)
return rate_dpis
def get_flor_rate_dpis_from_photon_fluxes(self, photon_fluxes):
rate_dpis = np.zeros((self.ndets,self.Nphabins))
for j in range(self.Nphabins):
rate_dpis[:,j] += np.sum(photon_fluxes*self.flor_resp_dpi[:,:,j],axis=1)
return rate_dpis
def get_non_flor_rate_dpis_from_photon_fluxes(self, photon_fluxes):
rate_dpis = np.zeros((self.ndets,self.Nphabins))
for j in range(self.Nphabins):
rate_dpis[:,j] += np.sum(photon_fluxes*self.non_flor_resp_dpi[:,:,j],axis=1)
return rate_dpis
def get_intp_theta_phi_wts(self, theta, phi, eps=0.1):
thetas = np.sort(np.unique(self.resp_arr['theta']))
phis = np.sort(np.unique(self.resp_arr['phi']))
th0 = np.digitize(theta, thetas) - 1
if theta == 180.0:
th0 -= 1
theta0 = thetas[th0]
theta1 = thetas[th0+1]
print theta0, theta1
if np.abs(theta0 - theta) < eps:
ths = [theta0]
th_wts = [1.0]
elif np.abs(theta1 - theta) < eps:
ths = [theta1]
th_wts = [1.0]
else:
ths = [theta0, theta1]
dth = theta1 - theta0
th_wts = [(theta1 - theta)/dth, (theta - theta0)/dth]
phi_ = phi - (int(phi)/45)*45.0
print phi_
if (int(phi)/45)%2 == 1:
phi_ = 45.0 - phi_
print phi_
ph0 = np.digitize(phi_, phis) - 1
if phi_ == 45.0:
ph0 -= 1
phi0 = phis[ph0]
phi1 = phis[ph0+1]