-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_llh_scan_wPSs_realtime.py
435 lines (340 loc) · 14.4 KB
/
do_llh_scan_wPSs_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numpy as np
from astropy.io import fits
from astropy.table import Table
from astropy.wcs import WCS
import os
import argparse
import logging, traceback
import time
import pandas as pd
from bkg_rate_estimation import rate_obj_from_sqltab
from sqlite_funcs import get_conn, write_result, write_results,\
timeID2time_dur, write_results_fromSigImg,\
update_square_stat, write_square_res_line,\
write_square_results
from dbread_funcs import get_rate_fits_tab, guess_dbfname,\
get_seeds_tab, get_info_tab, get_files_tab,\
get_square_tab, get_full_sqlite_table_as_df
from config import EBINS0, EBINS1, solid_angle_dpi_fname
from flux_models import Plaw_Flux
from minimizers import NLLH_ScipyMinimize_Wjacob, imxy_grid_miner, NLLH_ScipyMinimize
from drm_funcs import DRMs
from ray_trace_funcs import RayTraces
from LLH import LLH_webins
from models import Bkg_Model_wSA, Point_Source_Model,\
CompoundModel, Bkg_Model_wFlatA, Point_Source_Model_Binned_Rates
# need to read rate fits from DB
# and read twinds
# and read/get event, dmask, and ebins
# then get bkg_llh_obj and a minimizer
# then loop over all time windows
# minimizing nllh and recording bf params
def cli():
parser = argparse.ArgumentParser()
parser.add_argument('--evfname', type=str,\
help="Event data file",
default=None)
parser.add_argument('--dmask', type=str,\
help="Detmask fname",
default=None)
parser.add_argument('--job_id', type=int,\
help="ID to tell it what seeds to do",\
default=-1)
parser.add_argument('--Njobs', type=int,\
help="Total number of jobs submitted",\
default=64)
parser.add_argument('--dbfname', type=str,\
help="Name to save the database to",\
default=None)
parser.add_argument('--rt_dir', type=str,\
help="Directory with ray traces",\
default=None)
parser.add_argument('--pcfname', type=str,\
help="partial coding file name",\
default='pc_2.img')
parser.add_argument('--job_fname', type=str,\
help="File name for table with what imx/y square for each job",\
default='scan_job_table.csv')
parser.add_argument('--seeds_fname', type=str,\
help="positions and times to scan at file name",\
default='scan_seeds.csv')
parser.add_argument('--bkg_fname', type=str,\
help="Name of the file with the bkg fits",\
default='bkg_estimation.csv')
parser.add_argument('--pix_fname', type=str,\
help="Name of the file with good imx/y coordinates",\
default='good_pix2scan.npy')
parser.add_argument('--log_fname', type=str,\
help="Name for the log file",\
default='llh_scan')
args = parser.parse_args()
return args
def parse_bkg_csv(bkg_fname, solid_angle_dpi, ebins0, ebins1, bl_dmask, rt_dir):
bkg_df = pd.read_csv(bkg_fname)
col_names = bkg_df.columns
nebins = len(ebins0)
PSnames = []
for name in col_names:
if '_imx' in name:
PSnames.append(name.split('_')[0])
print PSnames
Nsrcs = len(PSnames)
if Nsrcs > 0:
bkg_name = 'Background_'
else:
bkg_name = ''
bkg_mod = Bkg_Model_wFlatA(bl_dmask, solid_angle_dpi, nebins, use_deriv=True)
ps_mods = []
if Nsrcs > 0:
rt_obj = RayTraces(rt_dir)
for i in range(Nsrcs):
name = PSnames[i]
imx = bkg_df[name+'_imx'][0]
imy = bkg_df[name+'_imy'][0]
mod = Point_Source_Model_Binned_Rates(imx, imy, 0.1,\
[ebins0,ebins1], rt_obj, bl_dmask,\
use_deriv=True, name=name)
ps_mods.append(mod)
return bkg_df, bkg_name, PSnames, bkg_mod, ps_mods
def do_analysis(square_tab, seed_tab, pc_imxs, pc_imys,\
pl_flux, drm_obj, rt_dir,\
bkg_llh_obj, sig_llh_obj,\
conn, db_fname, trigger_time, work_dir,\
bkg_fname, TSwrite=4.5):
conn.close()
ebins0 = sig_llh_obj.ebins0
ebins1 = sig_llh_obj.ebins1
nebins = len(ebins0)
bl_dmask = sig_llh_obj.bl_dmask
solid_ang_dpi = np.load(solid_angle_dpi_fname)
bkg_miner = NLLH_ScipyMinimize('')
sig_miner = NLLH_ScipyMinimize_Wjacob('')
bkg_df, bkg_name, PSnames, bkg_mod, ps_mods =\
parse_bkg_csv(bkg_fname, solid_ang_dpi,\
ebins0, ebins1, bl_dmask, rt_dir)
bkg_mod.has_deriv = False
bkg_mod_list = [bkg_mod]
Nsrcs = len(ps_mods)
if Nsrcs > 0:
bkg_mod_list += ps_mods
for ps_mod in ps_mods:
ps_mod.has_deriv = False
bkg_mod = CompoundModel(bkg_mod_list)
for square_ind, square_row in square_tab.iterrows():
logging.info("Starting squareID: %d"%(square_row['squareID']))
logging.info('square_row: ')
logging.info(square_row)
rt_obj = RayTraces(rt_dir, max_nbytes=6e9)
im_bl = ((pc_imxs>=square_row['imx0'])&\
(pc_imxs<square_row['imx1'])&\
(pc_imys>=square_row['imy0'])&\
(pc_imys<square_row['imy1']))
Npix = np.sum(im_bl)
logging.debug("%d Pixels to minimize at" %(Npix))
if Npix < 1:
fname = os.path.join(work_dir,\
'scan_res_%d_.csv' %(square_row['squareID']))
logging.info("Nothing to write for squareID %d"\
%(square_row['squareID']))
f = open(fname, 'w')
f.write('NONE')
f.close()
continue
imxs = pc_imxs[im_bl]
imys = pc_imys[im_bl]
tab = Table()
res_dfs2write = []
bl = (seed_tab['squareID']==square_row['squareID'])
logging.info("%d timeIDs to do"%(np.sum(bl)))
seeds = seed_tab[bl]
for seed_ind, seed_row in seeds.iterrows():
logging.debug("Starting timeID: %d, table index: %d"\
%(seed_row['timeID'],seed_ind))
res_dict = {}
res_dict = {'squareID':square_row['squareID'],
'timeID':seed_row['timeID']}
t0 = seed_row['time']
dt = seed_row['dur']
tmid = t0 + dt/2.
t1 = t0 + dt
res_dict['time'] = t0
res_dict['duration'] = dt
bkg_llh_obj.set_time(t0, t1)
sig_llh_obj.set_time(t0, t1)
# bkg_mod = Bkg_Model(bkg_rate_obj, bl_dmask, t=tmid,\
# bkg_err_fact=2.0, use_prior=False)
bkg_row = bkg_df.iloc[np.argmin(np.abs(tmid - bkg_df['time']))]
# bkg_mod = Bkg_Model_wSA(bl_dmask, solid_ang_dpi, nebins,\
# param_vals=bkg_row)
# logging.debug("bkg exp rates, errors")
# logging.debug(bkg_mod._rates)
# logging.debug(bkg_mod._errs)
bkg_llh_obj.set_model(bkg_mod)
bkg_miner.set_llh(bkg_llh_obj)
bkg_params = {pname:bkg_row[pname] for pname in\
bkg_llh_obj.model.param_names}
# bkg_miner.set_fixed_params(bkg_llh_obj.model.param_names)
bkg_miner.set_fixed_params(bkg_params.keys(), values=bkg_params.values())
# bkg_params = {pname:bkg_llh_obj.model.param_dict[pname]['val'] for\
# pname in bkg_llh_obj.model.param_names}
bkg_nllh = -bkg_llh_obj.get_llh(bkg_params)
res_dict['bkg_nllh'] = bkg_nllh
logging.debug("bkg_param_dict: ")
logging.debug(bkg_miner.param_info_dict)
logging.debug("bkg_nllh: %.3f" %(bkg_nllh))
imx_, imy_ = np.nanmean(imxs), np.nanmean(imys)
sig_mod = Point_Source_Model(imx_,\
imy_, 0.3,\
pl_flux, drm_obj,\
[ebins0,ebins1], rt_obj, bl_dmask,\
use_deriv=True)
sig_mod.drm_im_update = .2
comp_mod = CompoundModel([bkg_mod, sig_mod])
sig_llh_obj.set_model(comp_mod)
sig_miner.set_llh(sig_llh_obj)
fixed_pars = [pname for pname in sig_miner.param_names if\
('A' not in pname) or ('gamma' not in pname)]
sig_miner.set_fixed_params(fixed_pars)
sig_miner.set_fixed_params(['Signal_A', 'Signal_gamma'], fixed=False)
TSs = np.zeros(Npix)
sig_nllhs = np.zeros(Npix)
As = np.zeros(Npix)
gammas = np.zeros(Npix)
for ii in range(Npix):
try:
sig_miner.set_fixed_params(['Signal_imx', 'Signal_imy'], [imxs[ii],imys[ii]])
pars, nllh, res = sig_miner.minimize()
if not res[0].success:
logging.warning("Unsucessful minimize at: imx %.3f imy %.3f"%(imxs[ii],imys[ii]))
logging.warning(res[0])
TS = np.sqrt(2.*(bkg_nllh - nllh[0]))
# if TS >= TS_min:
if np.isnan(TS):
TS = 0.0
TSs[ii] = TS
sig_nllhs[ii] = nllh[0]
As[ii] = pars[0][0]
gammas[ii] = pars[0][1]
except Exception as E:
logging.error(E)
logging.error(traceback.format_exc())
logging.error("Failed to minimize seed: ")
logging.error((imxs[ii],imys[ii]))
logging.debug("Max TS: %.2f" %(np.nanmax(TSs)))
# best_ind = np.nanargmax(TSs)
# res_dict['TS'] = TSs[best_ind]
# res_dict['imx'] = imxs[best_ind]
# res_dict['imy'] = imys[best_ind]
# res_dict['A'] = As[best_ind]
# res_dict['ind'] = gammas[best_ind]
# res_dict['sig_nllh'] = sig_nllhs[best_ind]
# fname = os.path.join(work_dir,\
# 'res_%d_%d_.fits' %(res_dict['timeID'],\
# res_dict['squareID']))
TSbl = (TSs>=TSwrite)
if np.sum(TSbl) > 0:
logging.info("%d above TS of %.1f"%(np.sum(TSbl),TSwrite))
res_dict['TS'] = TSs[TSbl]
res_dict['imx'] = imxs[TSbl]
res_dict['imy'] = imys[TSbl]
res_dict['A'] = As[TSbl]
res_dict['ind'] = gammas[TSbl]
res_dict['sig_nllh'] = sig_nllhs[TSbl]
# res_dict['fname'] = fname
res_dfs2write.append(pd.DataFrame(res_dict))
fname = os.path.join(work_dir,\
'scan_res_%d_.csv' %(square_row['squareID']))
if len(res_dfs2write) > 0:
res_df = pd.concat(res_dfs2write)
res_df.to_csv(fname)
logging.info("Saved results to")
logging.info(fname)
else:
logging.info("Nothing to write for squareID %d"\
%(square_row['squareID']))
f = open(fname, 'w')
f.write('NONE')
f.close()
def main(args):
# fname = 'llh_analysis_from_rate_seeds_' + str(args.job_id)
fname = args.log_fname + '_' + str(args.job_id)
logging.basicConfig(filename=fname+'.log', level=logging.DEBUG,\
format='%(asctime)s-' '%(levelname)s- %(message)s')
t_0 = time.time()
if args.dbfname is None:
db_fname = guess_dbfname()
if isinstance(db_fname, list):
db_fname = db_fname[0]
else:
db_fname = args.dbfname
logging.info('Connecting to DB')
conn = get_conn(db_fname)
info_tab = get_info_tab(conn)
logging.info('Got info table')
files_tab = get_files_tab(conn)
logging.info('Got files table')
trigtime = info_tab['trigtimeMET'][0]
evfname = files_tab['evfname'][0]
ev_data = fits.open(evfname)[1].data
dmask_fname = files_tab['detmask'][0]
dmask = fits.open(dmask_fname)[0].data
bl_dmask = (dmask==0.0)
logging.debug('Opened up event and detmask files')
bkg_fits_df = pd.read_csv(args.bkg_fname)
# rate_fits_df = get_rate_fits_tab(conn)
# bkg_rates_obj = rate_obj_from_sqltab(rate_fits_df, 0, 1)
time_starting = time.time()
proc_num = args.job_id
# init classes up here
drm_dir = files_tab['drmDir'][0]
if args.rt_dir is None:
rt_dir = files_tab['rtDir'][0]
else:
rt_dir = args.rt_dir
drm_obj = DRMs(drm_dir)
# rt_obj = RayTraces(rt_dir, max_nbytes=1e10)
work_dir = files_tab['workDir'][0]
pl_flux = Plaw_Flux()
ebins0 = np.array(EBINS0)
ebins1 = np.array(EBINS1)
logging.debug("ebins0")
logging.debug(ebins0)
logging.debug("ebins1")
logging.debug(ebins1)
bkg_llh_obj = LLH_webins(ev_data, ebins0, ebins1, bl_dmask)
sig_llh_obj = LLH_webins(ev_data, ebins0, ebins1, bl_dmask)
try:
good_pix = np.load(args.pix_fname)
except Exception as E:
logging.error(E)
logging.warning("No pix2scan file")
PC = fits.open(args.pcfname)[0]
pc = PC.data
w_t = WCS(PC.header, key='T')
pcbl = (pc>=0.1)
pc_inds = np.where(pcbl)
pc_imxs, pc_imys = w_t.all_pix2world(pc_inds[1], pc_inds[0], 0)
logging.debug("Min pc_imx, pc_imy: %.2f, %.2f" %(np.nanmin(pc_imxs), np.nanmin(pc_imys)))
logging.debug("Max pc_imx, pc_imy: %.2f, %.2f" %(np.nanmax(pc_imxs), np.nanmax(pc_imys)))
# conn = get_conn(db_fname)
# if proc_num >= 0:
# square_tab = get_square_tab(conn, proc_group=proc_num)
# else:
# square_tab = get_square_tab(conn)
square_tab = pd.read_csv(args.job_fname)
bl = (square_tab['proc_group']==proc_num)
square_tab = square_tab[bl]
seed_tab = pd.read_csv(args.seeds_fname)
logging.info("Read in Square and Seeds Tables, now to do analysis")
do_analysis(square_tab, seed_tab, pc_imxs, pc_imys, pl_flux,\
drm_obj, rt_dir,\
bkg_llh_obj, sig_llh_obj,\
conn, db_fname, trigtime, work_dir, args.bkg_fname)
# do_analysis(square_tab, rate_res_tab, good_pix['imx'], good_pix['imy'], pl_flux,\
# drm_obj, rt_dir,\
# bkg_llh_obj, sig_llh_obj,\
# conn, db_fname, trigtime, work_dir,bkg_fits_df)
conn.close()
if __name__ == "__main__":
args = cli()
main(args)