-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_rates_mle_fp_4realtime.py
473 lines (357 loc) · 14.7 KB
/
do_rates_mle_fp_4realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import numpy as np
import pandas as pd
from scipy import optimize, stats, interpolate
from astropy.io import fits
from astropy.wcs import WCS
import os
import argparse
import logging, traceback, time
from config import quad_dicts, EBINS0, EBINS1, drm_quad_dir, solid_angle_dpi_fname
from sqlite_funcs import get_conn, append_rate_tab
from dbread_funcs import get_info_tab, guess_dbfname, get_files_tab,\
get_twinds_tab, get_rate_fits_tab
from bkg_rate_estimation import get_quad_rate_objs_from_db, rate_obj_from_sqltab
from mle_rates_for_realtime import do_rate_mle, do_rate_mle_mp, get_abs_cor_rates,\
get_cnts_intp_obj, get_quad_cnts_tbins
from counting_and_quad_funcs import get_quad_cnts_tbins_fast, dmask2ndets_perquad
from drm_funcs import get_ebin_ind_edges, DRMs
from wcs_funcs import world2val
from event2dpi_funcs import det2dpis, mask_detxy
from models import Bkg_Model_wSA
def cli():
parser = argparse.ArgumentParser()
parser.add_argument('--evfname', type=str,\
help="Event data file",
default=None)
parser.add_argument('--fp_dir', type=str,\
help="Directory where the detector footprints are",
default='/storage/work/jjd330/local/bat_data/rtfp_dir_npy/')
parser.add_argument('--Njobs', type=int,\
help="Total number of jobs",
default=16)
parser.add_argument('--jobid', type=int,\
help="Which job this is",
default=-1)
parser.add_argument('--pix_fname', type=str,\
help="Name of the file with good imx/y coordinates",\
default='good_pix2scan.npy')
parser.add_argument('--bkg_fname', type=str,\
help="Name of the file with the bkg fits",\
default='bkg_estimation.csv')
parser.add_argument('--dbfname', type=str,\
help="Name to save the database to",\
default=None)
parser.add_argument('--pcfname', type=str,\
help="Name of the partial coding image",\
default='pc_2.img')
args = parser.parse_args()
return args
def im_dist(imx0, imy0, imx1, imy1):
return np.hypot((imx1 - imx0), (imy1 - imy0))
def get_fp_arr(fp_dir):
fnames = np.array(os.listdir(fp_dir))
imxs = np.array([float(fn.split('_')[1]) for fn in fnames])
imys = np.array([float(fn.split('_')[2][:-4]) for fn in fnames])
dtp = [('imx', np.float), ('imy', np.float),
('fname', fnames.dtype)]
fp_arr = np.empty(len(imxs), dtype=dtp)
fp_arr['imx'] = imxs
fp_arr['imy'] = imys
fp_arr['fname'] = fnames
return fp_arr
def gauss_sig_bkg_nllh(cnts, nsig, nbkg, bkg_err):
sigma2 = nbkg + nsig + bkg_err**2
N_sub_bkg = cnts - nbkg
nllh = -1*np.sum(stats.norm.logpdf(N_sub_bkg - nsig,\
scale=np.sqrt(sigma2)))
return nllh
def gauss_nllh2min(theta, data_counts, bkg_counts,\
bkg_err, cnts_intp):
Nsig = 10.**theta[0]
gamma = theta[1]
Nsigs = Nsig*cnts_intp(gamma)
return gauss_sig_bkg_nllh(data_counts, Nsigs, bkg_counts,\
bkg_err)
# change bkg_obj to bkg_mod and add in the solid_ang_tot thing
# and put in something for the error
def min_det_fp_nllh(data_counts, bkg_diffuse, bkg_flat, dt,\
cnts_intp, Ndets, solid_ang, get_bkg_nllh=False):
# bkg_rate, bkg_rate_err = bkg_obj.get_rate(t)
bkg_flat_cnts = bkg_flat*Ndets*dt
bkg_diff_cnts = bkg_diffuse*solid_ang*dt
bkg_cnts = bkg_flat_cnts + bkg_diff_cnts
bkg_err = 2.0
args = (data_counts, bkg_cnts, bkg_err, cnts_intp)
# lowers = [-2., .25]
# uppers = [4., 2.5]
lowers = [-2., .25]
uppers = [4., 2.25]
bounds = optimize.Bounds(np.array(lowers), np.array(uppers))
# x0s = [[1., 1.], [2., 1.],
# [1., 2.], [2., 2.]]
x0s = [[1., .725], [2., 1.105],
[1., 1.605], [2., 1.995]]
# x0 = [1., 1.]
ress = []
nlogls = np.zeros(len(x0s))
for j, x0 in enumerate(x0s):
res = optimize.minimize(gauss_nllh2min, x0, args=args,\
method='L-BFGS-B', bounds=bounds)
# print res
ress.append(res)
nlogls[j] = res.fun
if np.all(np.isnan(nlogls)):
best_ind = 0
else:
best_ind = np.nanargmin(nlogls)
bf_nsig = 10.**ress[best_ind].x[0]
# bf_nsig = ress[best_ind].x[0]
bf_ind = ress[best_ind].x[1]
if get_bkg_nllh:
bkg_nllh = gauss_sig_bkg_nllh(data_counts, 0., bkg_cnts, bkg_err)
return bf_nsig, bf_ind, nlogls[best_ind], bkg_nllh
return bf_nsig, bf_ind, nlogls[best_ind]
class rates_fp_llh(object):
def __init__(self, imxs, imys,\
ev_data, bkg_mod, twind_tab,\
ebins0, ebins1, fp_dir, fp_arr,\
bl_dmask, drm_dir, bkg_df):
self.Nfps = len(imxs)
self.fp_arr = fp_arr
self.fp_dir = fp_dir
self.imxs = imxs
self.imys = imys
self.ebins0 = ebins0
self.ebins1 = ebins1
self.nebins = len(self.ebins0)
self.twind_tab = twind_tab
self.exp_groups = self.twind_tab.groupby('duration')
self.Ndurs = len(self.exp_groups)
# self.t_bins0 = t_bins0
# self.t_bins1 = t_bins1
self.ev_data = ev_data
self.bl_dmask = bl_dmask
self.ind_ax = np.linspace(-.5, 2.5, 20*3+1)
self.drm_obj = DRMs(drm_dir)
self.Ndets_tot = np.sum(bl_dmask)
self.bkg_mod = bkg_mod
self.bkg_df = bkg_df
def get_fp_vals(self):
self.fp_bls = []
self.ndets = []
self.solid_angs = []
for i in range(self.Nfps):
fp_ind = np.argmin(im_dist(self.fp_arr['imx'], self.fp_arr['imy'],
self.imxs[i], self.imys[i]))
fp = np.load(os.path.join(self.fp_dir,\
self.fp_arr[fp_ind]['fname']))
self.fp_bls.append(mask_detxy(fp, self.ev_data))
self.ndets.append(np.sum(self.bl_dmask&(fp==1)))
fpbl = (self.bl_dmask&(fp==1))
self.solid_angs.append(np.sum(self.bkg_mod.sa_dpi[fpbl]))
# self.ndets.append(np.sum(self.bl_dmask&(fp==0)))
def get_cnts_tbins_ebins_fps(self, dur):
df_twind = self.exp_groups.get_group(dur)
tbins0 = df_twind['time'].values
tbins1 = df_twind['time_end'].values
# tbins0 = self.t_bins0[dur_ind]
# tbins1 = self.t_bins1[dur_ind]
ntbins = len(tbins0)
tbin_size = tbins1[0] - tbins0[0]
tstep = tbins0[1] - tbins0[0]
tfreq = int(np.rint(tbin_size/tstep))
t_add = [tbins0[-1] + (i+1)*tstep for i in range(tfreq)]
tbins = np.append(tbins0, t_add)
ebins = np.append(self.ebins0, [self.ebins1[-1]])
self.cnts_fpte = np.zeros((self.Nfps,ntbins,self.nebins))
for ii in range(self.Nfps):
fp_bl = self.fp_bls[ii]
h = np.histogramdd([self.ev_data['TIME'][fp_bl],\
self.ev_data['ENERGY'][fp_bl]],
bins=[tbins,ebins])[0]
if tfreq <= 1:
h2 = h
else:
h2 = np.zeros((h.shape[0]-(tfreq-1),h.shape[1]))
for i in range(tfreq):
i0 = i
i1 = -tfreq + 1 + i
if i1 < 0:
h2 += h[i0:i1]
else:
h2 += h[i0:]
self.cnts_fpte[ii] = h2
def get_drm_stuff(self):
self.cnts_intps = []
for i in range(self.Nfps):
imx = self.imxs[i]
imy = self.imys[i]
drm = self.drm_obj.get_drm(imx, imy)
ebin_ind_edges = get_ebin_ind_edges(drm, self.ebins0, self.ebins1)
abs_cor = get_abs_cor_rates(imx, imy, drm)
self.cnts_intps.append(get_cnts_intp_obj(self.ind_ax,\
drm, ebin_ind_edges, abs_cor))
def run(self):
t_0 = time.time()
self.get_fp_vals()
self.get_drm_stuff()
logging.info("Done setting up footprints and drm stuff")
logging.info("Took %.3f seconds" %(time.time()-t_0))
res_dicts = []
for ii, exp_group in enumerate(self.exp_groups):
logging.info("Starting duration size %d of %d" %(ii+1, self.Ndurs))
dur = exp_group[0]
df_twind = exp_group[1]
tbins0 = df_twind['time'].values
tbins1 = df_twind['time_end'].values
timeIDs = df_twind['timeID'].values
ntbins = len(tbins0)
tbin_size = tbins1[0] - tbins0[0]
tstep = tbins0[1] - tbins0[0]
t_0 = time.time()
self.get_cnts_tbins_ebins_fps(dur)
logging.info("Done getting cnts_fpte")
logging.info("Took %.3f seconds" %(time.time()-t_0))
for jj in range(self.Nfps):
cnts_intp = self.cnts_intps[jj]
cnts_per_tbin = self.cnts_fpte[jj]
Ndets = self.ndets[jj]
solid_ang = self.solid_angs[jj]
imx = self.imxs[jj]
imy = self.imys[jj]
bf_nsigs = np.zeros(ntbins)
bf_inds = np.zeros(ntbins)
nllhs = np.zeros(ntbins)
bkg_nllhs = np.zeros(ntbins)
t_0 = time.time()
for kk in range(ntbins):
res_dict = {'dur':tbin_size,
'imx':imx, 'imy':imy,
'ndets':Ndets,
'solid_angle':solid_ang,
'timeID':timeIDs[kk]}
res_dict['time'] = tbins0[kk]
bkg_ind = np.argmin(np.abs((tbins0[kk]+dur/2.) -\
self.bkg_df['time']))
bkg_row = self.bkg_df.iloc[bkg_ind]
bkg_diffuse = np.array([bkg_row['diffuse_'+str(i)] for i\
in range(self.nebins)])
bkg_flat = np.array([bkg_row['flat_'+str(i)] for i\
in range(self.nebins)])
res_dict['Nsig'], res_dict['Plaw_Ind'], res_dict['nllh'],\
res_dict['bkg_nllh'] = min_det_fp_nllh(cnts_per_tbin[kk],\
bkg_diffuse, bkg_flat, tbin_size,\
cnts_intp, Ndets, solid_ang,\
get_bkg_nllh=True)
TS = np.sqrt(2.*(res_dict['bkg_nllh'] - res_dict['nllh']))
if np.isnan(TS):
TS = 0.0
res_dict['TS'] = TS
res_dicts.append(res_dict)
# print "Done minimizing in loop of tbins"
# print "Took %.3f seconds" %(time.time()-t_0)
logging.info("Done with %d of %d positions for duration %d of %d"%\
(jj+1,self.Nfps,ii+1,self.Ndurs))
return res_dicts
def main(args):
logging.basicConfig(filename='rates_llh_analysis_%d.log' %(args.jobid),\
level=logging.DEBUG,\
format='%(asctime)s-' '%(levelname)s- %(message)s')
if args.dbfname is None:
db_fname = guess_dbfname()
if isinstance(db_fname, list):
db_fname = db_fname[0]
else:
db_fname = args.dbfname
logging.info('Connecting to DB')
conn = get_conn(db_fname)
info_tab = get_info_tab(conn)
logging.info('Got info table')
files_tab = get_files_tab(conn)
logging.info('Got files table')
trigtime = info_tab['trigtimeMET'][0]
drm_dir = files_tab['drmDir'][0]
evfname = files_tab['evfname'][0]
dmfname = files_tab['detmask'][0]
ev_data = fits.open(evfname)[1].data
logging.debug('Opened up event file')
dmask = fits.open(dmfname)[0].data
bl_dmask = (dmask==0)
logging.debug('Opened up dmask file')
ebins0 = np.array(EBINS0)
ebins1 = np.array(EBINS1)
nebins = len(ebins0)
logging.debug("ebins0")
logging.debug(ebins0)
logging.debug("ebins1")
logging.debug(ebins1)
# probably get times from twind table
twind_df = get_twinds_tab(conn)
logging.info("Got TimeWindows table")
logging.info("Getting rate fits from file")
# rate_fits_df = get_rate_fits_tab(conn)
bkg_fits_df = pd.read_csv(args.bkg_fname)
# bkg_obj = rate_obj_from_sqltab(rate_fits_df, 0, 1)
min_bin_size = np.min(twind_df['duration'])
logging.info("Smallest duration to test is %.3fs" %(min_bin_size))
exp_groups = twind_df.groupby('duration')
nexps = len(exp_groups)
fp_arr = get_fp_arr(args.fp_dir)
imxax = np.arange(-1.6, 1.61, 0.1)
imyax = np.arange(-.9, .91, 0.1)
imxg, imyg = np.meshgrid(imxax, imyax)
imxs = imxg.ravel()
imys = imyg.ravel()
PC = fits.open(args.pcfname)[0]
pc = PC.data
w_t = WCS(PC.header, key='T')
pcs = world2val(w_t, pc, imxs, imys)
print np.min(pcs), np.max(pcs)
print np.sum(pcs>.08)
pc_bl = (pcs>.08)
imxs = imxs[pc_bl]
imys = imys[pc_bl]
try:
good_pix = np.load(args.pix_fname)
im_dists = np.zeros_like(imxs)
if len(good_pix) < 1:
logging.info("pix2scan file is there are 0 pixels to scan")
logging.info("Exiting")
return
for i in range(len(imxs)):
im_dists[i] = np.min(im_dist(imxs[i], imys[i],\
good_pix['imx'], good_pix['imy']))
bl = (im_dists<.1)
imxs = imxs[bl]
imys = imys[bl]
except Exception as E:
logging.error(E)
logging.warning("Trouble reading the pix2scan file")
logging.info("Using whole FoV")
Npnts = len(imxs)
logging.info("%d total grid points" %(Npnts))
Nper_job = 1 + int(Npnts/float(args.Njobs))
if args.jobid > -1:
i0 = args.jobid*Nper_job
i1 = i0 + Nper_job
imxs = imxs[i0:i1]
imys = imys[i0:i1]
logging.info("%d grid points to do" %(len(imxs)))
solid_angle_dpi = np.load(solid_angle_dpi_fname)
bkg_mod = Bkg_Model_wSA(bl_dmask, solid_angle_dpi, nebins)
rate_llh_obj = rates_fp_llh(imxs, imys, ev_data, bkg_mod,\
twind_df, ebins0, ebins1, args.fp_dir,\
fp_arr, bl_dmask, drm_dir, bkg_fits_df)
res_dicts = rate_llh_obj.run()
logging.info("Done with analysis")
logging.info("%d results to write" %(len(res_dicts)))
# append_rate_tab(conn, df_twind, quad_dict['id'], bkg_llh_tbins, llhs, bf_nsigs, bf_inds)
#
# logging.info("Appended rate results to DB")
df = pd.DataFrame(res_dicts)
logging.info("Done making results into DataFrame")
save_fname = 'rates_llh_res_%d_.csv' %(args.jobid)
df.to_csv(save_fname, index=False)
if __name__ == "__main__":
args = cli()
main(args)