-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_signal_llhs_scan.py
263 lines (199 loc) · 7.68 KB
/
do_signal_llhs_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
from astropy.io import fits
import os
import argparse
import logging, traceback
import time
from bkg_rate_estimation import rate_obj_from_sqltab
from sqlite_funcs import get_conn, write_result, write_results
from dbread_funcs import get_rate_fits_tab, guess_dbfname,\
get_seeds_tab, get_info_tab, get_files_tab
from config import EBINS0, EBINS1
from flux_models import Plaw_Flux
from minimizers import NLLH_ScipyMinimize_Wjacob, imxy_grid_miner, NLLH_ScipyMinimize
from drm_funcs import DRMs
from ray_trace_funcs import RayTraces
from LLH import LLH_webins
from models import Bkg_Model, Point_Source_Model, CompoundModel
# need to read rate fits from DB
# and read twinds
# and read/get event, dmask, and ebins
# then get bkg_llh_obj and a minimizer
# then loop over all time windows
# minimizing nllh and recording bf params
def cli():
parser = argparse.ArgumentParser()
parser.add_argument('--posfname', type=str,\
help="File name of imxys to read",
default=None)
parser.add_argument('--evfname', type=str,\
help="Event data file",
default=None)
parser.add_argument('--dmask', type=str,\
help="Detmask fname",
default=None)
parser.add_argument('--dt0', type=float,\
help="Start time relative to trig_time",\
default=12.512)
parser.add_argument('--dt1', type=float,\
help="End time relative to trig_time",\
default=12.552)
parser.add_argument('--dt_step', type=float,\
help="Time Step",\
default=0.03)
parser.add_argument('--dt', type=float,\
help="Expsoure time",\
default=0.03)
parser.add_argument('--job_id', type=int,\
help="ID to tell it what seeds to do",\
default=-1)
parser.add_argument('--dbfname', type=str,\
help="Name to save the database to",\
default=None)
parser.add_argument('--rt_dir', type=str,\
help="Directory with ray traces",\
default=None)
args = parser.parse_args()
return args
def do_analysis(imxs, imys, t0, t1, pl_flux, drm_obj, rt_obj,\
bkg_llh_obj, sig_llh_obj, bkg_rate_obj,\
job_id):
ebins0 = sig_llh_obj.ebins0
ebins1 = sig_llh_obj.ebins1
bl_dmask = sig_llh_obj.bl_dmask
bkg_miner = NLLH_ScipyMinimize('')
sig_miner = NLLH_ScipyMinimize_Wjacob('')
tmid = (t0+t1)/2.
bkg_mod = Bkg_Model(bkg_rate_obj, bl_dmask, t=tmid,\
bkg_err_fact=2.0, use_prior=False)
logging.debug("bkg exp rates, errors")
logging.debug(bkg_mod._rates)
logging.debug(bkg_mod._errs)
bkg_llh_obj.set_model(bkg_mod)
bkg_miner.set_llh(bkg_llh_obj)
bkg_miner.set_fixed_params(bkg_llh_obj.model.param_names)
bkg_params = {pname:bkg_llh_obj.model.param_dict[pname]['val'] for\
pname in bkg_llh_obj.model.param_names}
bkg_nllh = -bkg_llh_obj.get_llh(bkg_params)
sig_mod = Point_Source_Model(np.mean(imxs),\
np.mean(imys), 0.3,\
pl_flux, drm_obj,\
[ebins0,ebins1], rt_obj, bl_dmask,\
use_deriv=True)
sig_mod.drm_im_update = .2
comp_mod = CompoundModel([bkg_mod, sig_mod])
sig_llh_obj.set_model(comp_mod)
sig_miner.set_llh(sig_llh_obj)
fixed_pars = [pname for pname in sig_miner.param_names if\
('A' not in pname) or ('gamma' not in pname)]
sig_miner.set_fixed_params(fixed_pars)
sig_miner.set_fixed_params(['Signal_A', 'Signal_gamma'], fixed=False)
sig_miner.set_trans(['Signal_A'], [None])
# sig_miner.set_bounds(['Signal_A'], [(-5e-2, 1e1)])
sig_miner.set_bounds(['Signal_gamma'], [(0.0, 2.5)])
nllhs = np.zeros_like(imxs)
TSs = np.zeros_like(imxs)
As = np.zeros_like(imxs)
gammas = np.zeros_like(imxs)
logging.info(str(len(imxs)) + " positions to minimize")
for ii in xrange(len(imxs)):
try:
sig_miner.set_fixed_params(['Signal_imx', 'Signal_imy'],\
[imxs[ii],imys[ii]])
pars, nllh, res = sig_miner.minimize()
TSs[ii] = np.sqrt(2.*(bkg_nllh - nllh[0]))
nllhs[ii] = nllh[0]
As[ii] = pars[0][0]
gammas[ii] = pars[0][1]
except Exception as E:
logging.error(E)
logging.error(traceback.format_exc())
logging.error("Failed to minimize seed: ")
if ii%100 == 0:
logging.info("Done with %d of %d positions" %(ii+1,len(imxs)))
fname = 't0_%.3f_t1_%.3f_%d' %(t0, t1, job_id)
np.savez(fname, nllhs=nllhs, TSs=TSs, imxs=imxs, imys=imys,\
As=As, gammas=gammas, bkg_nllh=bkg_nllh)
def main(args):
fname = 'llh_scan_' + str(args.job_id)
logging.basicConfig(filename=fname+'.log', level=logging.DEBUG,\
format='%(asctime)s-' '%(levelname)s- %(message)s')
t_0 = time.time()
if args.dbfname is None:
db_fname = guess_dbfname()
if isinstance(db_fname, list):
db_fname = db_fname[0]
else:
db_fname = args.dbfname
logging.info('Connecting to DB')
conn = get_conn(db_fname)
info_tab = get_info_tab(conn)
logging.info('Got info table')
files_tab = get_files_tab(conn)
logging.info('Got files table')
trigtime = info_tab['trigtimeMET'][0]
evfname = files_tab['evfname'][0]
ev_data = fits.open(evfname)[1].data
dmask_fname = files_tab['detmask'][0]
dmask = fits.open(dmask_fname)[0].data
bl_dmask = (dmask==0.0)
logging.debug('Opened up event and detmask files')
rate_fits_df = get_rate_fits_tab(conn)
bkg_rates_obj = rate_obj_from_sqltab(rate_fits_df, 0, 1)
pos_file = np.load(args.posfname)
bins = [np.linspace(-2,2,10*4+1),
np.linspace(-1,1,10*2+1)]
# bins = [np.linspace(-2,2,5*4+1),
# np.linspace(-1,1,5*2+1)]
h = np.histogram2d(pos_file['imxs'], pos_file['imys'], bins=bins)[0]
imx_inds, imy_inds = np.where(h>0)
Nbins_per_job = 2
I0 = Nbins_per_job*args.job_id
I1 = I0 + Nbins_per_job
imxinds = imx_inds[I0:I1]
imyinds = imy_inds[I0:I1]
imx_bl = np.isin(pos_file['imx_inds'], imxinds)
imy_bl = np.isin(pos_file['imy_inds'], imyinds)
pos_bl = imx_bl&imy_bl
imxs = pos_file['imxs'][pos_bl]
imys = pos_file['imys'][pos_bl]
time_starting = time.time()
proc_num = args.job_id
# init classes up here
drm_dir = files_tab['drmDir'][0]
if args.rt_dir is None:
rt_dir = files_tab['rtDir'][0]
else:
rt_dir = args.rt_dir
drm_obj = DRMs(drm_dir)
rt_obj = RayTraces(rt_dir, max_nbytes=1e10)
pl_flux = Plaw_Flux()
ebins0 = np.array(EBINS0)
ebins1 = np.array(EBINS1)
logging.debug("ebins0")
logging.debug(ebins0)
logging.debug("ebins1")
logging.debug(ebins1)
tbins0 = np.arange(args.dt0, args.dt1, args.dt_step) + trigtime
tbins1 = tbins0 + args.dt
Ntbins = len(tbins0)
logging.info('tbins0: ')
logging.info(tbins0)
logging.info('tbins1: ')
logging.info(tbins1)
logging.info('Ntbins: %d'%(Ntbins))
bkg_llh_obj = LLH_webins(ev_data, ebins0, ebins1, bl_dmask)
sig_llh_obj = LLH_webins(ev_data, ebins0, ebins1, bl_dmask)
conn = get_conn(db_fname)
for i in range(Ntbins):
t0 = tbins0[i]
dt = args.dt
bkg_llh_obj.set_time(t0, dt)
sig_llh_obj.set_time(t0, dt)
do_analysis(imxs, imys, t0, t0+dt, pl_flux, drm_obj, rt_obj,\
bkg_llh_obj, sig_llh_obj, bkg_rates_obj,\
args.job_id)
conn.close()
if __name__ == "__main__":
args = cli()
main(args)