-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathneural_network.py
475 lines (422 loc) · 21.1 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import time
import logging as log
import tensorflow as tf
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.preprocessing import StandardScaler
from neural_network_params import NeuralNetworkParams
from common import THRES, ALMOST_ZERO, get_classification_accuracy
class NeuralNetwork(BaseEstimator):
"""
Right now this only uses tanh for middle layers and identity for output layer
"""
@staticmethod
def get_init_rand_bound_tanh(shape):
# Used for tanh
# Use the initialization method recommended by Glorot et al.
return np.sqrt(6. / np.sum(shape))
@staticmethod
def get_init_rand_bound_sigmoid(shape):
# Use the initialization method recommended by Glorot et al.
return np.sqrt(2. / np.sum(shape))
@staticmethod
def create_tf_var(shape):
# bound = NeuralNetwork.get_init_rand_bound_sigmoid(shape)
bound = NeuralNetwork.get_init_rand_bound_tanh(shape)
return tf.Variable(tf.random_uniform(shape, minval=-bound, maxval=bound))
def __init__(
self,
layer_sizes=None,
data_classes=0,
lasso_param_ratio=0.1,
group_lasso_param=1,
ridge_param=0.1,
max_iters=1,
num_inits=1,
init_learn_rate=0.1,
adam_learn_rate=0.001,
adam_epsilon=1e-08,
is_relu=0):
self.data_classes = int(data_classes)
self.num_nonsmooth_layers = 1 # hard code that only the first layer is nonsmooth
# Make tensorflow computation graph
self.layer_sizes = layer_sizes
self.ridge_param = ridge_param
self.lasso_param_ratio = lasso_param_ratio
self.group_lasso_param = group_lasso_param
self.init_learn_rate = init_learn_rate
self.adam_learn_rate = adam_learn_rate
self.adam_epsilon = adam_epsilon
self.num_inits = int(num_inits)
self.max_iters = int(max_iters)
self.is_relu = is_relu
if layer_sizes is not None:
self._init_nn()
def _init_nn(self):
self.lasso_param = self.lasso_param_ratio * self.group_lasso_param
if self.data_classes < 2:
num_out = 1
else:
num_out = self.data_classes
self.x = tf.placeholder(tf.float32, [None, self.layer_sizes[0]])
self.y = tf.placeholder(tf.float32, [None, num_out])
self.coefs = []
self.coef_sizes = []
self.intercepts = []
self.intercept_sizes = []
self.layers = []
input_layer = self.x
for i in range(len(self.layer_sizes) - 1):
fan_in = self.layer_sizes[i]
fan_out = self.layer_sizes[i + 1]
W_size = [fan_in, fan_out]
b_size = [fan_out]
W = NeuralNetwork.create_tf_var(W_size)
b = NeuralNetwork.create_tf_var(b_size)
if self.is_relu:
hidden_layer = tf.nn.relu(tf.add(tf.matmul(input_layer, W), b))
else:
hidden_layer = tf.nn.tanh(tf.add(tf.matmul(input_layer, W), b))
self.coef_sizes.append(W_size)
self.intercept_sizes.append(b_size)
self.coefs.append(W)
self.intercepts.append(b)
self.layers.append(hidden_layer)
input_layer = hidden_layer
# Make final layer
W_out_size = [self.layer_sizes[-1], num_out]
b_out_size = [num_out]
W_out = NeuralNetwork.create_tf_var(W_out_size)
b_out = NeuralNetwork.create_tf_var(b_out_size)
self.coefs.append(W_out)
self.coef_sizes.append(W_out_size)
self.intercepts.append(b_out)
self.intercept_sizes.append(b_out_size)
if self.data_classes == 0:
self.y_pred = tf.add(tf.matmul(input_layer, W_out), b_out)
self.loss = 0.5 * tf.reduce_mean(tf.pow(self.y - self.y_pred, 2))
elif self.data_classes == 1:
self.y_pred = tf.sigmoid(tf.add(tf.matmul(input_layer, W_out), b_out))
self.loss = -tf.reduce_mean(tf.add(
tf.multiply(self.y, tf.log(self.y_pred)),
tf.multiply(1 - self.y, tf.log(1 - self.y_pred))
))
else:
self.y_pred = tf.add(tf.matmul(input_layer, W_out), b_out)
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y, logits=self.y_pred))
self.ridge_reg = tf.add_n([tf.nn.l2_loss(w) for w in self.coefs[1:]]) if len(self.coefs) > 1 else 0
if self.group_lasso_param + self.lasso_param == 0:
# Actually, if we don't penalize the first layer at all, we should use a ridge penalty
self.ridge_reg = tf.add_n([tf.nn.l2_loss(w) for w in self.coefs])
self.smooth_pen_loss = tf.add(self.loss, 0.5 * self.ridge_param * self.ridge_reg)
self.l1_reg = tf.reduce_sum(tf.abs(self.coefs[0])) # penalize only the first layer
self.l2_reg = tf.reduce_sum(
tf.sqrt(tf.reduce_sum(tf.pow(self.coefs[0], 2), axis=1))
)
self.all_pen_loss = tf.add(self.smooth_pen_loss, self.lasso_param * self.l1_reg + self.group_lasso_param * self.l2_reg)
self.grad_optimizer = tf.train.AdamOptimizer(learning_rate=self.adam_learn_rate, epsilon=self.adam_epsilon)
# Create gradient update placeholders and such
self.var_list = self.coefs + self.intercepts
self.var_sizes_list = self.coef_sizes + self.intercept_sizes
self.smooth_train_step = self.grad_optimizer.minimize(self.smooth_pen_loss, var_list=self.var_list)
#self.all_train_step = self.grad_optimizer.minimize(self.all_pen_loss, var_list=self.var_list)
self.beta1_power, self.beta2_power = self.grad_optimizer._get_beta_accumulators()
self.coef0_slot = self.grad_optimizer.get_slot(self.coefs[0], "v")
self.smooth_pen_grad = self.grad_optimizer.compute_gradients(
self.smooth_pen_loss,
var_list=self.var_list,
)
self.placeholders = []
self.assign_ops = []
for v, v_size in zip(self.var_list, self.var_sizes_list):
ph = tf.placeholder(
tf.float32,
shape=v_size,
)
assign_op = v.assign(ph)
self.placeholders.append(ph)
self.assign_ops.append(assign_op)
self.all_pen_grad = self.grad_optimizer.compute_gradients(
self.all_pen_loss,
var_list=self.var_list,
)
def fit(self, X, y):
st_time = time.time()
self.scaler = StandardScaler()
self.scaler.fit(X)
x_scaled = self.scaler.transform(X)
sess = tf.Session()
best_loss = None
self.model_params = None
with sess.as_default():
for n_init in range(self.num_inits):
log.info("FIT INIT %d", n_init)
tf.global_variables_initializer().run()
try:
if self.group_lasso_param + self.lasso_param > 0:
#train_loss = self._fit_one_init_adam_prox(sess, x_scaled, y, self.max_iters)
train_loss = self._fit_one_init_prox(sess, x_scaled, y, self.max_iters)
else:
train_loss = self._fit_one_init_subgrad(sess, x_scaled, y, self.max_iters)
model_params = NeuralNetworkParams(
[c.eval() for c in self.coefs],
[b.eval() for b in self.intercepts],
self.scaler
)
except AssertionError as e:
log.info("Assert error %s", str(e))
train_loss = None
model_params = None
if train_loss is not None and (self.model_params is None or train_loss < best_loss):
self.model_params = model_params
best_loss = train_loss
if best_loss is None:
log.info("Couldn't fit the model well")
else:
log.info("FINAL best_loss %f (train time %f)", best_loss, time.time() - st_time)
log.info("num nonzeros %s", self.model_params.nonzero_first_layer[0])
log.info("layers %s", self.layer_sizes)
log.info("lasso %f, group lasso %f", self.lasso_param, self.group_lasso_param)
sess.close()
def _fit_one_init_subgrad(self, sess, X, y, max_iters, print_iter=1000, thres=1e-5, incr_thres=1.05):
log.info("ADAM begins")
prev_val = None
prev_train = None
unpen_loss, all_pen_train_err = sess.run(
[
self.loss,
self.smooth_pen_loss],
feed_dict={self.x: X, self.y: y}
)
for i in range(max_iters):
_, unpen_loss, all_pen_train_err = sess.run(
[
self.smooth_train_step,
self.loss,
self.smooth_pen_loss],
feed_dict={self.x: X, self.y: y}
)
if i % print_iter == 0 or i == self.max_iters - 1:
log.info("Iter %d, unpen loss %f, loss %f", i, unpen_loss, all_pen_train_err)
assert not np.isnan(all_pen_train_err)
return all_pen_train_err
def _fit_one_init_adam_prox(self, sess, X, y, max_iters, print_iter=1000, thres=1e-5, incr_thres=1.05, min_learning_rate=1e-8):
log.info("ADAM+PROX begins")
learn_rate = self.init_learn_rate
prev_val = None
prev_train = None
unpen_loss, all_pen_train_err, coef0_slot, beta1_power, beta2_power = sess.run(
[
self.loss,
self.all_pen_loss,
self.coef0_slot,
self.beta1_power,
self.beta2_power],
feed_dict={self.x: X, self.y: y}
)
print(beta1_power, beta2_power)
for i in range(max_iters):
_, unpen_loss, all_pen_train_err, coef0_slot, beta1_power, beta2_power = sess.run(
[
self.smooth_train_step,
self.loss,
self.all_pen_loss,
self.coef0_slot,
self.beta1_power,
self.beta2_power],
feed_dict={self.x: X, self.y: y}
)
#print(coef0_slot)
lr = self.adam_learn_rate * np.sqrt(1 - beta2_power) / (1 - beta1_power)
v_sqrt = np.sqrt(coef0_slot)
adam_weight = lr / (v_sqrt + self.adam_epsilon)
# Do proximal gradient step
input_coef_val = self.coefs[0].eval()
# Do proxmal gradient step for lasso: soft threshold
input_coef_val_updated = np.multiply(
np.sign(input_coef_val), np.maximum(np.abs(input_coef_val) - self.lasso_param * adam_weight, ALMOST_ZERO)
)
if self.group_lasso_param > 0:
# Do proximal gradient step for group lasso: soft scale
group_norms = 1e-10 + np.linalg.norm(input_coef_val_updated, axis=1).reshape(-1, 1)
group_lasso_scale_factor = np.maximum(1 - self.group_lasso_param * adam_weight / group_norms, ALMOST_ZERO)
input_coef_val_updated = np.multiply(group_lasso_scale_factor, input_coef_val_updated)
updated_coefs = []
if self.lasso_param + self.group_lasso_param > 0:
sess.run(self.assign_ops[0], feed_dict={self.placeholders[0] : input_coef_val_updated})
updated_coefs = [input_coef_val_updated]
unpen_loss, all_pen_train_err = sess.run(
[self.loss, self.all_pen_loss],
feed_dict={self.x: X, self.y: y}
)
prev_train = all_pen_train_err
if i % print_iter == 0 or i == self.max_iters - 1:
log.info("Iter %d, unpen loss %f, loss %f", i, unpen_loss, all_pen_train_err)
all_zero = False # If nn becomes all zero, stop training
for l_idx in range(len(updated_coefs)):
num_nonzero = self.layer_sizes[l_idx] - np.sum(np.max(np.abs(updated_coefs[l_idx]), axis=1) < THRES)
all_zero |= (num_nonzero == 0)
if all_zero:
log.info("ALL ZERO")
break
for l_idx in range(len(updated_coefs)):
num_nonzero = self.layer_sizes[l_idx] - np.sum(np.max(np.abs(updated_coefs[l_idx]), axis=1) < THRES)
log.info(" layer %d, num nonzero %d" % (l_idx, num_nonzero))
nonzero_per_hidden = np.sum(np.abs(updated_coefs[l_idx]) >= THRES, axis=0)
nonzero_hidden_mask = nonzero_per_hidden > 0
log.info(" num nonzero into hidden node %s" % nonzero_per_hidden)
if num_nonzero < 100:
if np.sum(nonzero_hidden_mask) > 0:
log.info(" nonzero input nodes %s" % np.where(np.max(np.abs(updated_coefs[l_idx][:, nonzero_hidden_mask]), axis=1) > THRES))
nonzero_per_input = np.sum(np.abs(updated_coefs[l_idx][:, nonzero_hidden_mask]) > THRES, axis=1)
nonzero_inputs = np.where(nonzero_per_input)[0]
norm_nonzero_inputs = [
np.linalg.norm(updated_coefs[l_idx][input_idx, nonzero_hidden_mask], ord=1)
for input_idx in nonzero_inputs
]
log.info(" num nonzero out from input node %s" % nonzero_per_input[np.where(nonzero_per_input)])
log.info(" weight norms out from input node %s" % norm_nonzero_inputs)
if learn_rate < min_learning_rate:
log.info("not changing fast enough.")
break
return all_pen_train_err
def _fit_one_init_prox(self, sess, X, y, max_iters, print_iter=1000, thres=1e-5, incr_thres=1.05, min_learning_rate=1e-8):
log.info("PROX begins")
learn_rate = self.init_learn_rate
prev_val = None
prev_train = None
unpen_loss, all_pen_train_err = sess.run(
[
self.loss,
self.all_pen_loss],
feed_dict={self.x: X, self.y: y}
)
for i in range(max_iters):
# Do smooth gradient step
smooth_pen_grad = sess.run(
self.smooth_pen_grad,
feed_dict={self.x: X, self.y: y}
)
potential_vars = []
for var_list_idx, v in enumerate(self.var_list):
grad = smooth_pen_grad[var_list_idx][0]
var = smooth_pen_grad[var_list_idx][1]
update_val = var - learn_rate * grad
potential_vars.append(update_val)
if var_list_idx > 0:
sess.run(self.assign_ops[var_list_idx], feed_dict={self.placeholders[var_list_idx] : update_val})
# Do proximal gradient step
input_coef_val = potential_vars[0]
# Do proxmal gradient step for lasso: soft threshold
input_coef_val_updated = np.multiply(
np.sign(input_coef_val), np.maximum(np.abs(input_coef_val) - self.lasso_param * learn_rate, ALMOST_ZERO)
)
if self.group_lasso_param > 0:
# Do proximal gradient step for group lasso: soft scale
group_norms = 1e-10 + np.linalg.norm(input_coef_val_updated, axis=1)
group_lasso_scale_factor = np.maximum(1 - self.group_lasso_param * learn_rate / group_norms, ALMOST_ZERO).reshape(-1, 1)
input_coef_val_updated = np.multiply(group_lasso_scale_factor, input_coef_val_updated)
updated_coefs = []
if self.lasso_param + self.group_lasso_param > 0:
sess.run(self.assign_ops[0], feed_dict={self.placeholders[0] : input_coef_val_updated})
updated_coefs = [input_coef_val_updated]
unpen_loss, all_pen_train_err = sess.run(
[self.loss, self.all_pen_loss],
feed_dict={self.x: X, self.y: y}
)
if prev_train is not None and all_pen_train_err > prev_train:
learn_rate *= 0.8
# Reset parameters to old values since the training loss went up instead
for var_list_idx, v in enumerate(self.var_list):
var = smooth_pen_grad[var_list_idx][1]
sess.run(self.assign_ops[var_list_idx], feed_dict={self.placeholders[var_list_idx] : var})
log.info("WENT UP: Training error went up: %f > %f" % (all_pen_train_err, prev_train))
continue
else:
prev_train = all_pen_train_err
if i % print_iter == 0 or i == self.max_iters - 1 or learn_rate < min_learning_rate:
log.info("Iter %d, unpen loss %f, loss %f", i, unpen_loss, all_pen_train_err)
all_zero = False # If nn becomes all zero, stop training
for l_idx in range(len(updated_coefs)):
num_nonzero = self.layer_sizes[l_idx] - np.sum(np.max(np.abs(updated_coefs[l_idx]), axis=1) < THRES)
all_zero |= (num_nonzero == 0)
if all_zero:
log.info("ALL ZERO")
break
for l_idx in range(len(updated_coefs)):
num_nonzero = self.layer_sizes[l_idx] - np.sum(np.max(np.abs(updated_coefs[l_idx]), axis=1) < THRES)
log.info(" layer %d, num nonzero %d" % (l_idx, num_nonzero))
nonzero_per_hidden = np.sum(np.abs(updated_coefs[l_idx]) >= THRES, axis=0)
nonzero_hidden_mask = nonzero_per_hidden > 0
log.info(" num nonzero into hidden node %s" % nonzero_per_hidden)
if num_nonzero < 100:
if np.sum(nonzero_hidden_mask) > 0:
log.info(" nonzero input nodes %s" % np.where(np.max(np.abs(updated_coefs[l_idx][:, nonzero_hidden_mask]), axis=1) > THRES))
nonzero_per_input = np.sum(np.abs(updated_coefs[l_idx][:, nonzero_hidden_mask]) > THRES, axis=1)
nonzero_inputs = np.where(nonzero_per_input)[0]
norm_nonzero_inputs = [
np.linalg.norm(updated_coefs[l_idx][input_idx, nonzero_hidden_mask], ord=1)
for input_idx in nonzero_inputs
]
log.info(" num nonzero out from input node %s" % nonzero_per_input[np.where(nonzero_per_input)])
log.info(" weight norms out from input node %s" % norm_nonzero_inputs)
if learn_rate < min_learning_rate:
log.info("not changing fast enough.")
break
return all_pen_train_err
def _init_network_variables(self, sess):
for i, best_c in enumerate(self.model_params.coefs):
assign_op = self.coefs[i].assign(best_c)
sess.run(assign_op)
for i, best_b in enumerate(self.model_params.intercepts):
assign_op = self.intercepts[i].assign(best_b)
sess.run(assign_op)
def predict(self, x):
x_scaled = self.scaler.transform(x)
sess = tf.Session()
with sess.as_default():
self._init_network_variables(sess)
y_pred = sess.run(self.y_pred, feed_dict={self.x: x_scaled})
sess.close()
return y_pred
def score(self, x, y):
if self.model_params is None:
return -np.inf
x_scaled = self.scaler.transform(x)
sess = tf.Session()
with sess.as_default():
self._init_network_variables(sess)
loss = sess.run(self.loss, feed_dict={self.x: x_scaled, self.y: y})
sess.close()
return -loss
def get_params(self, deep=True):
return {
"layer_sizes": self.layer_sizes,
"data_classes": self.data_classes,
"lasso_param_ratio": self.lasso_param_ratio,
"group_lasso_param": self.group_lasso_param,
"ridge_param": self.ridge_param,
"max_iters": self.max_iters,
"num_inits": self.num_inits,
"init_learn_rate": self.init_learn_rate,
"is_relu": self.is_relu}
def set_params(self, **params):
if "layer_sizes" in params:
self.layer_sizes = params["layer_sizes"]
if "data_classes" in params:
self.data_classes = int(params["data_classes"])
if "lasso_param_ratio" in params:
self.lasso_param_ratio = params["lasso_param_ratio"]
if "group_lasso_param" in params:
self.group_lasso_param = params["group_lasso_param"]
if "ridge_param" in params:
self.ridge_param = params["ridge_param"]
if "max_iters" in params:
self.max_iters = int(params["max_iters"])
if "num_inits" in params:
self.num_inits = int(params["num_inits"])
if "init_learn_rate" in params:
self.init_learn_rate = params["init_learn_rate"]
if "is_relu" in params:
self.is_relu = params["is_relu"]
self._init_nn()