-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataGetter.py
executable file
·66 lines (54 loc) · 1.88 KB
/
dataGetter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import numpy as np
import random
import args
class DataGetter:
def __init__(self, mode='train'):
self.mode = mode
args1 = args.args()
self.datasetPath = args1.datasetPath
def getSinalData(self, path):
img = np.load(self.datasetPath + path).squeeze()
if self.mode == 'train':
seed = random.randint(0, 9)
img = self.randFlip(img, seed)
img = self.limitToLenght(img, 80)
img = self.norm(img)
return img
def norm(self, img, max=1000, min=0):
img[img > max] = max
img[img < min] = min
img = (img - min) / (max - min)
return img
def limitToLenght(self, data, lenghtTarget):
lenght = data.shape[0]
outData = np.zeros((lenghtTarget, data.shape[1], data.shape[2]))
if lenght <= lenghtTarget:
outData[0:lenght, :, :] = data
else:
outData = data[0:lenghtTarget, :, :]
return outData
def randFlip(self, data, seed):
if seed <= 3:
return data
else:
data1 = np.zeros((data.shape[0], data.shape[1], data.shape[2]))
for i in range(data.shape[0]):
data1[i] = data[data.shape[0] - 1 - i]
return data1
def getPathsAndLables(self):
labels = []
if self.mode == 'train':
f = open(self.datasetPath + '/train.txt', 'r')
elif self.mode == 'test':
f = open(self.datasetPath + '/test.txt', 'r')
elif self.mode == 'val':
f = open(self.datasetPath + '/val.txt', 'r')
paths = f.readlines()
for i in range(len(paths)):
paths[i] = paths[i][:-1]
label = paths[i].split('/')[2]
if label == 'fracture':
labels.append(0)
if label == 'noFracture':
labels.append(1)
return paths, labels