-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_marg_rr_binary.R
103 lines (83 loc) · 3.67 KB
/
find_marg_rr_binary.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
### Finds marginal relative risk given values of b_0_c and conditional log odds (lo_c)
### Control event risk of 0.3
pacman::p_load(tidyr, rstanarm, foreach, doParallel, tibble, purrr, dplyr)
generate_data <- function(iteration, max_ss){
tibble(id = 1:max_ss,
treatment = rbinom(n = max_ss, size = 1, p= 0.5),
x1 = rbinom(n = max_ss, size = 1, p= 0.5),
x2 = rbinom(n = max_ss, size = 1, p= 0.5),
x3 = rnorm(n = max_ss),
x4 = x3**2,
x5 = rnorm(n = max_ss),
### x6, x7, x8 are just noise
x6 = rbinom(n = max_ss, size = 1, p= 0.5),
x7 = rnorm(n = max_ss),
x8 = rnorm(n = max_ss))
}
logit <- function(p){
log(p/(1-p))
}
logit_inverse <- function(eta){
exp(eta)/(1+exp(eta))
}
generate_outcomes <- function(data, effect_treatment, b_0_c, beta_1, beta_2, beta_3, beta_4, beta_5, control_risk){
max_ss <- nrow(data)
data %>%
mutate(eta = b_0_c + effect_treatment*treatment + beta_1*x1 + beta_2*x2 + beta_3*x3 + beta_4*x4 + beta_5*x5,
p = logit_inverse(eta),
y = rbinom(n = max_ss, size = 1, p))
}
get_marginal_rr <- function(iteration, b_0_c, lo_c){
data_y <- generate_outcomes(generate_data(1, 5000),
effect_treatment = lo_c,
b_0_c = b_0_c,
beta_1 = 1,
beta_2 = -0.5,
beta_3 = 1,
beta_4 = -0.1,
beta_5 = 0.5)
res <- data_y %>%
group_by(treatment) %>%
summarize(mean_y = mean(y, na.rm = TRUE))
risk_ctr <- res %>% filter(treatment == 0) %>% pull(mean_y)
risk_trt <- res %>% filter(treatment == 1) %>% pull(mean_y)
risk_trt / risk_ctr
}
# b_0_c obtained from conditional_b0_binary.R
# lo_c obtained as those values where the unadjusted model achieves 50% and 80% power
# except for N=100, where it's 30% and 40% power
cores <- detectCores()
## CER = 0.3
registerDoParallel(cores = cores)
rr_100_30p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.265619, lo_c = -1.03448276)
}
rr_100_40p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.265619, lo_c = -1.24137931)
}
rr_200_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.264603, lo_c = -0.87931034)
}
rr_200_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.264603, lo_c = -1.36)
}
rr_500_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.267382, lo_c = -0.56)
}
rr_500_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.267382, lo_c = -0.82758621)
}
rr_1000_50p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.265569, lo_c = -0.3925)
}
rr_1000_80p <- foreach(i = 1:5000, .combine = 'c', .errorhandling = 'remove') %dopar% {
get_marginal_rr(i, b_0_c = -1.265569, lo_c = -0.55172414)
}
stopImplicitCluster()
res <- tibble(max_ss = c(100, 100, 200, 200, 500, 500, 1000, 1000),
lo_c = c(-1.03448276, -1.24137931, -0.87931034, -1.36, -0.56, -0.82758621, -0.3925,
-0.55172414),
approx_power = c(30, 40, 50, 80, 50, 80, 50, 80),
rr = c(mean(rr_100_30p), mean(rr_100_40p), mean(rr_200_50p), mean(rr_200_80p),
mean(rr_500_50p), mean(rr_500_80p), mean(rr_1000_50p), mean(rr_1000_80p)))
saveRDS(res, "PATH/FILENAME.RDS")