-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathStateGraph.hs
101 lines (91 loc) · 4.68 KB
/
StateGraph.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
{-# LANGUAGE RankNTypes #-}
module StateGraph where
import Types
import Step
import qualified Data.Map as M
import Data.List
import qualified Data.Sequence as S
data StateGraph = StateGraph
{
sg_index2node :: M.Map Int ProgramState,
sg_node2index :: M.Map ProgramState Int,
-- Nothing means the node was not explored (reached state exploration depth limit)
-- Just [] means the node WAS explored and was a dead end.
sg_node2out :: M.Map Int (Maybe [Int]),
sg_node2in :: M.Map Int [Int],
sg_node2prev :: M.Map Int Int,
sg_edges :: M.Map (Int, Int) [Event]
}
deriving (Show)
stateGraph :: ProgramState -> Int -> StateGraph
stateGraph init n = condenseGraph $ addEmptyEdgeLists $
buildGraph (S.singleton (n, init))
(StateGraph M.empty M.empty M.empty M.empty M.empty M.empty)
where
addEmptyEdgeLists g = g {sg_node2out = foldl' (\g i -> M.insertWith (\_ old -> old) i (Just []) g) (sg_node2out g)
(M.keys (sg_index2node g))}
buildGraph :: S.Seq (Int, ProgramState) -> StateGraph -> StateGraph
buildGraph frontier g | S.null frontier = g
| otherwise = buildGraph frontier' $ g''
where
addEdge' u (es,v) g = addEdge u v es g
g' = foldr (addEdge' node) g outs
g'' = g' { sg_node2out = M.adjust (\old -> case old of {Just os -> Just os; Nothing -> Just []})
(sg_node2index g' M.! node)
(sg_node2out g') }
(remDepth,node) S.:< rest = S.viewl frontier
outs = [(es, s') | (es, s', _) <- runStep stepState node]
frontier' = foldl (S.|>) rest [(remDepth-1, out)
| (_,out) <- outs,
M.notMember out (sg_node2index g),
remDepth > 0]
addEdge a b e g@(StateGraph i2n n2i n2o n2in n2p edges) = StateGraph i2n'' n2i'' n2o'' n2in' n2p' edges'
where
aIsNew = not (M.member a n2i)
(ia,i2n',n2i')
| aIsNew = (M.size i2n, M.insert ia a i2n, M.insert a ia n2i)
| otherwise = (n2i M.! a, i2n, n2i )
bIsNew = not (M.member b n2i')
(ib,i2n'',n2i'')
| bIsNew = (M.size i2n', M.insert ib b i2n', M.insert b ib n2i')
| otherwise = (n2i' M.! b, i2n', n2i' )
n2o' = M.alter addB ia n2o
n2o'' = if bIsNew then M.insert ib Nothing n2o' else n2o'
addB Nothing = Just (Just [ib])
addB (Just Nothing) = Just (Just [ib])
addB (Just (Just os)) = Just $ if ib `elem` os then Just os else Just (ib:os)
n2in' = M.insertWith (++) ib [ia] n2in
n2p' = if bIsNew then M.insert ib ia n2p else n2p
edges' = M.insert (ia, ib) e edges
isStratifiable :: StateGraph -> Int -> Bool
isStratifiable (StateGraph i2n n2i n2o n2in n2p edges) i = singleIn && singleOut
where singleIn = maybe 0 length (M.findWithDefault Nothing i n2o) < 2
singleOut = length (M.findWithDefault [] i n2in) < 2
-- node -> farthest node reachable from this one via stratifiable nodes
stratifiedTarget :: StateGraph -> Int -> (Int, [Event])
stratifiedTarget g@(StateGraph i2n n2i n2o n2in n2p edges) i = case (isStratifiable g i, M.findWithDefault Nothing i n2o) of
(True, Just [n]) -> (target, (M.findWithDefault [] (i, n) edges) ++ events)
where
(target, events) = stratifiedTarget g n
_ -> (i, [])
-- node -> farthest node reachable from this one via stratifiable back edges
stratifiedSource :: StateGraph -> Int -> Int
stratifiedSource g@(StateGraph i2n n2i n2o n2in n2p edges) i = case (isStratifiable g i, M.findWithDefault [] i n2in) of
(True, [n]) -> stratifiedSource g n
_ -> i
condenseGraph :: StateGraph -> StateGraph
condenseGraph g@(StateGraph i2n n2i n2o n2in n2p edges) = StateGraph i2n' n2i' n2o' n2in' n2p' edges'
where
strat = fst . stratifiedTarget g
isStraight k = k==0 || k == strat k
cleanup :: forall v . M.Map Int v -> M.Map Int v
cleanup m = M.filterWithKey (\k _ -> isStraight k) m
i2n' = cleanup i2n
n2i' = M.filter (`M.member` i2n') $ M.map strat n2i
n2o' = cleanup $ M.mapWithKey (\i os -> fmap (filter (/= i) . nub . map strat) os) n2o
n2in' = cleanup $ M.mapWithKey (\i os -> filter (/= i) . nub . map strat $ os) n2in
n2p' = cleanup $ M.map (stratifiedSource g) n2p
edges' = M.fromList [((i,j'), es ++ es')
| ((i,j), es) <- M.toList edges,
isStraight i,
let (j', es') = stratifiedTarget g j]