-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathconvex_hull.py
70 lines (55 loc) · 2.51 KB
/
convex_hull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
2D Convex Hull Code from Wikibooks
https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
"""
class hull2D:
def convex_hull(self,points):
"""Computes the convex hull of a set of 2D points.
Input: an iterable sequence of (x, y) pairs representing the points.
Output: a list of vertices of the convex hull in counter-clockwise order,
starting from the vertex with the lexicographically smallest coordinates.
Implements Andrew's monotone chain algorithm. O(n log n) complexity.
"""
# Sort the points lexicographically (tuples are compared lexicographically).
# Remove duplicates to detect the case we have just one unique point.
points = sorted(set(points))
# Boring case: no points or a single point, possibly repeated multiple times.
if len(points) <= 1:
return points
# 2D cross product of OA and OB vectors, i.e. z-component of their 3D cross product.
# Returns a positive value, if OAB makes a counter-clockwise turn,
# negative for clockwise turn, and zero if the points are collinear.
def cross(o, a, b):
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])
# Build lower hull
lower = []
for p in points:
while len(lower) >= 2 and cross(lower[-2], lower[-1], p) <= 0:
lower.pop()
lower.append(p)
# Build upper hull
upper = []
for p in reversed(points):
while len(upper) >= 2 and cross(upper[-2], upper[-1], p) <= 0:
upper.pop()
upper.append(p)
# Concatenation of the lower and upper hulls gives the convex hull.
# Last point of each list is omitted because it is repeated at the beginning of the other list.
return lower[:-1] + upper[:-1]
def convexHullecoords(self,ecoords):
p=[]
for line in ecoords:
p.append((line[0],line[1]))
hull_data = self.convex_hull(p)
ecoords=[]
for i in range(0,len(hull_data)):
ecoords.append([hull_data[i][0],hull_data[i][1],1])
ecoords.append(ecoords[0])
return ecoords
######################################################################
if __name__ == '__main__':
my_hull=hull2D()
p = [(1,1),(0,3),(0,0),(4,5),(10,10)]
c = my_hull.convex_hull(p)
print(p)
print(c)