-
Notifications
You must be signed in to change notification settings - Fork 0
/
alignments.py
288 lines (246 loc) · 10.2 KB
/
alignments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import pandas as pd
import numpy as np
def needlemanwunsch(inpA: str, inpB: str, score_del=-2, score_ins=-2, score_match=+1, score_mismatch=-1, display_table:bool=False, h=np.max):
"""Computes optimal pairwise global alignment score for two input strings.
Parameters
----------
inpA : str
First input string to be aligned.
inpB : str
Second input string to be aligned.
score_del : int
Score of deletion, i.e. use char of inpA, but non of inpB.
score_int : int
Score of insertion, i.e. use char of inpB, but non of inpA.
score_match : int
Score of identical characters in inpA and inpB.
score_mismatch : int
Score of diverging characters in inpA and inpB.
display_table : bool
If true, pandas dataframe holding dynamic programming matrix will be
displayed.
h : fct
Objective function.
E.g. np.max to maximize along all possible alignments: similarity.
Returns
-------
int: the score of the optimal alignment(s).
"""
table = pd.DataFrame(index=["ε"] + list(inpA), columns=["ε"] + list(inpB), data=0)
# initialize first column
for i in range(1, len(inpA)+1):
table.iloc[i,0] = table.iloc[i-1,0] + score_del
# initialize first row
for j in range(1, len(inpB)+1):
table.iloc[0,j] = table.iloc[0,j-1] + score_ins
# traverse through rest of table
for i in range(1, len(inpA)+1):
for j in range(1, len(inpB)+1):
table.iloc[i,j] = h([table.iloc[i-1,j-1] + (score_match if inpA[i-1] == inpB[j-1] else score_mismatch),
table.iloc[i, j-1] + score_ins,
table.iloc[i-1,j ] + score_del])
if (display_table):
display(table)
return table.iloc[len(inpA), len(inpB)]
def semiglobal(inpA: str, inpB: str, score_del=-2, score_ins=-2, score_match=+1, score_mismatch=-1, display_table:bool=False, h=np.max):
"""Computes optimal pairwise semi-global alignment score for two input strings.
Note: input is **not** symmetric, i.e. small in large search. inpA is the large one.
Parameters
----------
inpA : str
First (longer) input string to be aligned.
inpB : str
Second (shorter) input string to be aligned.
score_del : int
Score of deletion, i.e. use char of inpA, but non of inpB.
score_int : int
Score of insertion, i.e. use char of inpB, but non of inpA.
score_match : int
Score of identical characters in inpA and inpB.
score_mismatch : int
Score of diverging characters in inpA and inpB.
display_table : bool
If true, pandas dataframe holding dynamic programming matrix will be
displayed.
h : fct
Objective function.
E.g. np.max to maximize along all possible alignments: similarity.
Returns
-------
int: the score of the optimal alignment(s).
"""
table = pd.DataFrame(index=["ε"] + list(inpA), columns=["ε"] + list(inpB), data=0)
# initialize first column
for i in range(1, len(inpA)+1):
table.iloc[i,0] = 0
# initialize first row
for j in range(1, len(inpB)+1):
table.iloc[0,j] = table.iloc[0,j-1] + score_ins
# traverse through rest of table
for i in range(1, len(inpA)+1):
for j in range(1, len(inpB)+1):
table.iloc[i,j] = h([table.iloc[i-1,j-1] + (score_match if inpA[i-1] == inpB[j-1] else score_mismatch),
table.iloc[i, j-1] + score_ins,
table.iloc[i-1,j ] + score_del])
if (display_table):
display(table)
return h(table.iloc[:, len(inpB)])
def endGapFree(inpA: str, inpB: str, score_del=-2, score_ins=-2, score_match=+1, score_mismatch=-1, display_table:bool=False, h=np.max):
"""Computes optimal pairwise end-gap-free alignment score for two input strings.
Parameters
----------
inpA : str
First input string to be aligned.
inpB : str
Second input string to be aligned.
score_del : int
Score of deletion, i.e. use char of inpA, but non of inpB.
score_int : int
Score of insertion, i.e. use char of inpB, but non of inpA.
score_match : int
Score of identical characters in inpA and inpB.
score_mismatch : int
Score of diverging characters in inpA and inpB.
display_table : bool
If true, pandas dataframe holding dynamic programming matrix will be
displayed.
h : fct
Objective function.
E.g. np.max to maximize along all possible alignments: similarity.
Returns
-------
int: the score of the optimal alignment(s).
"""
table = pd.DataFrame(index=["ε"] + list(inpA), columns=["ε"] + list(inpB), data=0)
# initialize first column
for i in range(1, len(inpA)+1):
table.iloc[i,0] = 0
# initialize first row
for j in range(1, len(inpB)+1):
table.iloc[0,j] = 0
# traverse through rest of table
for i in range(1, len(inpA)+1):
for j in range(1, len(inpB)+1):
table.iloc[i,j] = h([table.iloc[i-1,j-1] + (score_match if inpA[i-1] == inpB[j-1] else score_mismatch),
table.iloc[i, j-1] + score_ins,
table.iloc[i-1,j ] + score_del])
if (display_table):
display(table)
return h([h(table.iloc[:, len(inpB)]), h(table.iloc[len(inpA), :])])
def smithwaterman(inpA: str, inpB: str, score_del=-2, score_ins=-2, score_match=+1, score_mismatch=-1, display_table:bool=False, h=np.max):
"""Computes optimal pairwise local alignment score for two input strings.
Parameters
----------
inpA : str
First input string to be aligned.
inpB : str
Second input string to be aligned.
score_del : int
Score of deletion, i.e. use char of inpA, but non of inpB.
score_int : int
Score of insertion, i.e. use char of inpB, but non of inpA.
score_match : int
Score of identical characters in inpA and inpB.
score_mismatch : int
Score of diverging characters in inpA and inpB.
display_table : bool
If true, pandas dataframe holding dynamic programming matrix will be
displayed.
h : fct
Objective function.
E.g. np.max to maximize along all possible alignments: similarity.
Returns
-------
int: the score of the optimal alignment(s).
"""
table = pd.DataFrame(index=["ε"] + list(inpA), columns=["ε"] + list(inpB), data=0)
# initialize first column
for i in range(1, len(inpA)+1):
table.iloc[i,0] = 0
# initialize first row
for j in range(1, len(inpB)+1):
table.iloc[0,j] = 0
# traverse through rest of table
for i in range(1, len(inpA)+1):
for j in range(1, len(inpB)+1):
table.iloc[i,j] = h([table.iloc[i-1,j-1] + (score_match if inpA[i-1] == inpB[j-1] else score_mismatch),
table.iloc[i, j-1] + score_ins,
table.iloc[i-1,j ] + score_del,
0])
if (display_table):
display(table)
return h(h(table))
def gotoh(inpA: str, inpB: str, score_del=-2, score_del_extend=-1, score_ins=-2, score_ins_extend=-1, score_match=+1, score_mismatch=-1, display_table:bool=False, h=np.max):
"""Computes optimal pairwise global alignment score with affine gap costs for two input strings.
Parameters
----------
inpA : str
First input string to be aligned.
inpB : str
Second input string to be aligned.
score_del : int
Score of deletion, i.e. use char of inpA, but non of inpB.
score_int : int
Score of insertion, i.e. use char of inpB, but non of inpA.
score_del_extend : int
Score of extending an existing deletion. Should be smaller than score_del.
score_int_extend : int
Score of extending an existing insertion. Should be smaller than score_ins.
score_match : int
Score of identical characters in inpA and inpB.
score_mismatch : int
Score of diverging characters in inpA and inpB.
display_table : bool
If true, pandas dataframe holding dynamic programming matrix will be
displayed.
h : fct
Objective function.
E.g. np.max to maximize along all possible alignments: similarity.
Returns
-------
int: the score of the optimal alignment(s).
"""
forbidden = np.inf
if h == np.max:
forbidden = -1 * forbidden
table_A = pd.DataFrame(index=["ε"] + list(inpA), columns=["ε"] + list(inpB), data=0)
table_xdel = table_A.copy()
table_xins = table_A.copy()
table_xdel.iloc[0,0] = "_"
table_xins.iloc[0,0] = "_"
# initialize first columns
for i in range(1, len(inpA)+1):
if i > 1:
table_A.iloc[i,0] = table_A.iloc[i-1,0] + score_del_extend
else:
table_A.iloc[i,0] = score_del
table_xdel.iloc[i,0] = "_"
table_xins.iloc[i,0] = forbidden
# initialize first rows
for j in range(1, len(inpB)+1):
if j > 1:
table_A.iloc[0,j] = table_A.iloc[0,j-1] + score_ins_extend
else:
table_A.iloc[0,j] = score_ins
table_xdel.iloc[0,j] = forbidden
table_xins.iloc[0,j] = "_"
# traverse through rest of tables
if True:
for i in range(1, len(inpA)+1):
for j in range(1, len(inpB)+1):
# note: order of table computation is important!
table_xdel.iloc[i,j] = h([table_A.iloc[i-1,j] + score_del,
table_xdel.iloc[i-1,j] + score_del_extend])
table_xins.iloc[i,j] = h([table_A.iloc[i,j-1] + score_ins,
table_xins.iloc[i,j-1] + score_ins_extend])
table_A.iloc[i,j] = h([table_A.iloc[i-1,j-1] + (score_match if inpA[i-1] == inpB[j-1] else score_mismatch),
table_xdel.iloc[i,j],
table_xins.iloc[i,j]])
if (display_table):
table_A.columns.name = "A"
table_xdel.columns.name = "xDel"
table_xins.columns.name = "xIns"
display(table_A)
display(table_xdel)
display(table_xins)
return table_A.iloc[len(inpA), len(inpB)]