Skip to content

Latest commit

 

History

History
238 lines (187 loc) · 11.7 KB

README.md

File metadata and controls

238 lines (187 loc) · 11.7 KB

Build Status Codacy Badge Codacy Badge

exfi

Get exons from a transcriptome and raw genomic reads using abyss-bloom and bedtools

Citation

exfi was published on Ecology and Evolution

Langa J, Estonba A, Conklin D. EXFI: Exon and splice graph prediction without a reference genome. Ecol Evol. 2020;00:1–14. https://doi.org/10.1002/ece3.6587

Requirements

Docker or different apt and conda packages (see installation guide).

How to install

To install other dependencies, follow the instructions from the travis files:

  1. Install packages with apt:
sudo apt install \
    autoconf build-essential bzip2 cmake curl gcc git libboost-dev libsdsl3 \
    libz-dev zlib1g
  1. Install conda, then configure channels and install
conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda
conda install --yes abyss=2.0.1 bedtools biopython pandas pip
  1. Install biobloomtools

You may need to use sudo in the last command:

# Install biobloomtools
git clone --recursive https://github.com/bcgsc/biobloom.git && \
cd biobloom/ && \
git submodule update --init && \
git checkout 0a42916922d42611a087d4df871e424a8907896e && \
./autogen.sh && \
./configure --prefix=/usr/local/ && \
make -j 4 && \
make install
  1. Copy this repo and install it with pip:
pip install https://github.com/jlanga/exfi/archive/v1.5.6.zip

If you have access to Docker, you can create a Debian container with the following command:

docker build --rm --tag exfi:v1.5.6 github.com/jlanga/exfi-docker

More info

Required data

  • A transcriptome in fasta format (take it from Ensembl for example, or the result of a de novo transcriptome assembler like trinity, trans-abyss or oases)

  • A set of genomic reads in fastq format, paired end or not. .gz files are allowed.

Running the pipeline

  1. Make a baited Bloom filter of the genomic reads with build_baited_bloom_filter:
  • genome.fa.gz is the set of genomic reads and
  • genome_k25_m100M_l1.bf is the resulting Bloom filter, made of kmers of length 25, a size of 100 MB and the number of times of a kmer must be in the reads is 1 (levels).
# Assuming that you are in the exfi folder:
build_baited_bloom_filter \
    --input-fasta data/transcript.fa \
    --kmer 25 \
    --bloom-size 100M \
    --levels 1 \
    --threads 4 \
    --output-bloom genome_k25_m100M_l1.bf \
    data/genome.fa.gz
  1. Run build_splice_graph to get putative exons in the transcriptome.
  • data/transcript.fa is the input transcriptome,
  • genome_k25_m500M_l1.bf is the Bloom filter generated above
  • kmer length has to be the same
  • test.gfa is the resulting splice graph in GFA1 format.
build_splicegraph \
    --input-fasta data/transcript.fa \
    --input-bloom genome_k25_m100M_l1.bloom \
    --kmer 25 \
    --max-fp-bases 5 \
    --output-gfa test.gfa

This splice graph can be visualized with Bandage

Example:

H	VN:Z:1.0
S	ENSDART00000033574.5:0-216	GTAAGCCGCGGCGGTGTGTGTGTGTGTGTGTGTTCTCCGTCATCTGTGTTCTGCTGAATGATGAGGACAGACGTGTTTCTCCAGCGGAGGAAGCGTAGAGATGTTCTGCTCTCCATCATCGCTCTTCTTCTGCTCATCTTCGCCATCGTTCATCTCGTCTTCTGCGCTGGACTGAGTTTCCAGGGTTCGAGTTCTGCTCGCGTCCGCCGAGACCTC
S	ENSDART00000033574.5:216-398	GAGAATGCGAGTGAGTGTGTGCAGCCACAGTCGTCTGAGTTTCCTGAAGGATTCTTCACGGTGCAGGAGAGGAAAGATGGAGGAATCCTGATTTACTTCATGATCATCTTCTACATGCTGCTGTCCGTCTCCATCGTGTGTGATGAATATTTTCTGCCATCTCTGGAGGTCATCAGCGAGCG
S	ENSDART00000033574.5:397-482	GTCTTGGTCTCTCGCAGGATGTTGCTGGAGCCACGTTTATGGCTGCGGGGAGTTCGGCTCCAGAGCTCGTCACTGCATTTCTGGG
S	ENSDART00000033574.5:480-586	GGTGTGTTTGTGACGAAGGGCGACATCGGCGTCAGCACCATCATGGGTTCTGCTGTCTATAACCTGCTGTGCATCTGTGCAGCGTGCGGCCTGCTGTCCTCTGCAG
S	ENSDART00000033574.5:585-687	GTTGGTCGTCTGAGCTGCTGGCCGTTGTTCAGAGATTGTGTTGCGTACTCCATCAGTGTCGCCGCCGTCATCGCCATCATCTCAGATAACAGAGTTTACTGG
S	ENSDART00000033574.5:685-969	GGTATGATGGCGCGTGTCTCCTGCTGGTGTACGGTGTGTATGTAGCTGTACTGTGTTTCGATCTGAAGATCAGCGAGTACGTGATGCAGCGCTTCAGTCCATGCTGCTGGTGTCTGAAACCTCGCGATCGTGACTCAGGCGAGCAGCAGCCTCTAGTGGGCTGGAGTGACGACAGCAGCCTGCGGGTCCAGCGCCGTTCCAGAAATGACAGCGGAATATTCCAGGATGATTCTGGATATTCACATCTATCGCTCAGCCTGCACGGACTCAACGAAATCAGCGAC
S	ENSDART00000033574.5:969-1177	GAGCACAAGAGTGTGTTCTCCATGCCGGATCACGATCTGAAGCGAATCCTGTGGGTTTTGTCTCTTCCGGTCAGCACTCTGCTGTTTGTGAGCGTTCCCGACTGCAGGAGACCCTTCTGGAAGAACTTCTACATGCTGACCTTCCTGATGTCCGCCGTCTGGATTTCTGCATTCACTTATGTGCTGGTCTGGATGGTCACAATCGTGG
S	ENSDART00000033574.5:1176-1283	GGGGAGACTCTGGGAATCCCGGACACAGTGATGGGAATGACTCTTCTGGCTGCAGGAACCAGTATCCCCGACACCGTGGCCAGTGTGATGGTGGCACGAGAAGGTAA
S	ENSDART00000033574.5:1277-2002	AGGTAAATCTGATATGGCCATGTCCAACATCGTGGGCTCTAACGTGTTCGATATGCTGTGTCTGGGCCTGCCGTGGTTCATCCAGACGGTGTTTGTTGACGTGGGCTCCCCGGTGGATGTCAACAGCTCGGGGCTGGTCTTCATGTCCTGCACGCTGCTGCTCTCCATCATCTTCCTCTTCCTCGCCGTGCACATCAACGGCTGGAAGCTGGACTGGAAGCTGGGTCTGGTGTGTTTGGCGTGTTACATTCTGTTCGCAACACTCTCCATCCTGTACGAGCTCGGCATCATCGGGAACAATCCCATACGCTCCTGCAGCGACTGAACACTGCTCTACAGCGCCCCCTTATGGACAACACAAGGACGTGACTCTTTATAACCCTCTAAAGTGCACAGGTTCATTACTGAATACAAGAAAATAGAACTGCGAGACGTCAACTCAAAATACAAGAGAAGTCAAAGTGCGAGATGTAAAAAATATATGCACATAAATGAGGATAAACTTTTTATTTAATAAGACAAAACTGCATAAAGTCTGATGTGAACACTGCTCAACAGCGCCCTCTCATGGACAACACATGGATCTGACTCTTATTAACCCTCCAGAGTGCAAATACACTAACACAACGTAATATAACCAAGTTAAAATGGCAAGATGTGAACTCAAAATACAAGAAAGCAGTCAAGATGCCCGACATAACAAATGTGCATTAAAATGTAAGCCC
L	ENSDART00000033574.5:0-216	+	ENSDART00000033574.5:216-398	+	0M
L	ENSDART00000033574.5:216-398	+	ENSDART00000033574.5:397-482	+	1M
L	ENSDART00000033574.5:397-482	+	ENSDART00000033574.5:480-586	+	2M
L	ENSDART00000033574.5:480-586	+	ENSDART00000033574.5:585-687	+	1M
L	ENSDART00000033574.5:585-687	+	ENSDART00000033574.5:685-969	+	2M
L	ENSDART00000033574.5:685-969	+	ENSDART00000033574.5:969-1177	+	0M
L	ENSDART00000033574.5:969-1177	+	ENSDART00000033574.5:1176-1283	+	1M
L	ENSDART00000033574.5:1176-1283	+	ENSDART00000033574.5:1277-2002	+	6M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:0-216	+	0	216M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:216-398	+	216	182M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:397-482	+	397	85M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:480-586	+	480	106M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:585-687	+	585	102M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:685-969	+	685	284M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:969-1177	+	969	208M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:1176-1283	+	1176	107M
C	ENSDART00000033574.5	+	ENSDART00000033574.5:1277-2002	+	1277	725M
P	ENSDART00000033574.5	ENSDART00000033574.5:0-216+,ENSDART00000033574.5:216-398+,ENSDART00000033574.5:397-482+,ENSDART00000033574.5:480-586+,ENSDART00000033574.5:585-687+,ENSDART00000033574.5:685-969+,ENSDART00000033574.5:969-1177+,ENSDART00000033574.5:1176-1283+,ENSDART00000033574.5:1277-2002+	*
  1. Get exonic sequences

To extract meaningful information from the GFA file, we provide two scripts:

  • gfa_to_exons: which returns the predicted exons in FASTA format. For each record, each sequence comes with a unique identifier (EXON[0-9]+), a description indicating the coordinates of this exon with respect to the different transcripts (TR1:0-200 TR2:105-305), and the sequence of nucleotides. It is possible to hard and soft mask nucleotides that may not be correct. Example (soft masked):
>EXON00000000003 ENSDART00000033574.5:397-482
gTCTTGGTCTCTCGCAGGATGTTGCTGGAGCCACGTTTATGGCTGCGGGGAGTTCGGCTC
CAGAGCTCGTCACTGCATTTCTGgg
>EXON00000000004 ENSDART00000033574.5:480-586
ggTGTGTTTGTGACGAAGGGCGACATCGGCGTCAGCACCATCATGGGTTCTGCTGTCTAT
AACCTGCTGTGCATCTGTGCAGCGTGCGGCCTGCTGTCCTCTGCAg
  • gfa_to_gapped_transcript: which returns the transcript with interleaved Ns where it is predicted to be an intron. Example (hard masked):
>ENSDART00000033574.5 EXON00000000001,EXON00000000002,EXON00000000003,EXON00000000004,EXON00000000005,EXON00000000006,EXON00000000007,EXON00000000008,EXON00000000009
GTAAGCCGCGGCGGTGTGTGTGTGTGTGTGTGTTCTCCGTCATCTGTGTTCTGCTGAATG
ATGAGGACAGACGTGTTTCTCCAGCGGAGGAAGCGTAGAGATGTTCTGCTCTCCATCATC
GCTCTTCTTCTGCTCATCTTCGCCATCGTTCATCTCGTCTTCTGCGCTGGACTGAGTTTC
CAGGGTTCGAGTTCTGCTCGCGTCCGCCGAGACCTCNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNGAGAATGCGAGTGAGTGTGTGCAGCCACAGTCGTCTGAGTTTCC
TGAAGGATTCTTCACGGTGCAGGAGAGGAAAGATGGAGGAATCCTGATTTACTTCATGAT
CATCTTCTACATGCTGCTGTCCGTCTCCATCGTGTGTGATGAATATTTTCTGCCATCTCT
GGAGGTCATCAGCGAGCNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNT
CTTGGTCTCTCGCAGGATGTTGCTGGAGCCACGTTTATGGCTGCGGGGAGTTCGGCTCCA
GAGCTCGTCACTGCATTTCTGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNTGTGTTTGTGACGAAGGGCGACATCGGCGTCAGCACCATCATGGGTTCTGCTGTC
TATAACCTGCTGTGCATCTGTGCAGCGTGCGGCCTGCTGTCCTCTGCANNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTTGGTCGTCTGAGCTGCTGGCCGTTGTTCA
GAGATTGTGTTGCGTACTCCATCAGTGTCGCCGCCGTCATCGCCATCATCTCAGATAACA
GAGTTTACTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTATGATG
GCGCGTGTCTCCTGCTGGTGTACGGTGTGTATGTAGCTGTACTGTGTTTCGATCTGAAGA
TCAGCGAGTACGTGATGCAGCGCTTCAGTCCATGCTGCTGGTGTCTGAAACCTCGCGATC
GTGACTCAGGCGAGCAGCAGCCTCTAGTGGGCTGGAGTGACGACAGCAGCCTGCGGGTCC
AGCGCCGTTCCAGAAATGACAGCGGAATATTCCAGGATGATTCTGGATATTCACATCTAT
CGCTCAGCCTGCACGGACTCAACGAAATCAGCGACNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNGAGCACAAGAGTGTGTTCTCCATGCCGGATCACGATCTGAAGCGA
ATCCTGTGGGTTTTGTCTCTTCCGGTCAGCACTCTGCTGTTTGTGAGCGTTCCCGACTGC
AGGAGACCCTTCTGGAAGAACTTCTACATGCTGACCTTCCTGATGTCCGCCGTCTGGATT
TCTGCATTCACTTATGTGCTGGTCTGGATGGTCACAATCGTGNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNGGGAGACTCTGGGAATCCCGGACACAGTGATGGGAA
TGACTCTTCTGGCTGCAGGAACCAGTATCCCCGACACCGTGGCCAGTGTGATGGTGGCAC
GAGANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNATCT
GATATGGCCATGTCCAACATCGTGGGCTCTAACGTGTTCGATATGCTGTGTCTGGGCCTG
CCGTGGTTCATCCAGACGGTGTTTGTTGACGTGGGCTCCCCGGTGGATGTCAACAGCTCG
GGGCTGGTCTTCATGTCCTGCACGCTGCTGCTCTCCATCATCTTCCTCTTCCTCGCCGTG
CACATCAACGGCTGGAAGCTGGACTGGAAGCTGGGTCTGGTGTGTTTGGCGTGTTACATT
CTGTTCGCAACACTCTCCATCCTGTACGAGCTCGGCATCATCGGGAACAATCCCATACGC
TCCTGCAGCGACTGAACACTGCTCTACAGCGCCCCCTTATGGACAACACAAGGACGTGAC
TCTTTATAACCCTCTAAAGTGCACAGGTTCATTACTGAATACAAGAAAATAGAACTGCGA
GACGTCAACTCAAAATACAAGAGAAGTCAAAGTGCGAGATGTAAAAAATATATGCACATA
AATGAGGATAAACTTTTTATTTAATAAGACAAAACTGCATAAAGTCTGATGTGAACACTG
CTCAACAGCGCCCTCTCATGGACAACACATGGATCTGACTCTTATTAACCCTCCAGAGTG
CAAATACACTAACACAACGTAATATAACCAAGTTAAAATGGCAAGATGTGAACTCAAAAT
ACAAGAAAGCAGTCAAGATGCCCGACATAACAAATGTGCATTAAAATGTAAGCCC

Attributions

Written by Jorge Langa

Bibliography