-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdatasets.py
616 lines (536 loc) · 20.9 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
"""
datasets.py
=======================
Houses the DynamicImageDataset class, also functions to help with image color channel normalization, transformers, etc..
"""
import torch
from torchvision import transforms
import os
import dask
#from dask.distributed import Client; Client()
import dask.array as da, pandas as pd, numpy as np
from pathflowai.utils import *
import pysnooper
import nonechucks as nc
from torch.utils.data import Dataset, DataLoader
import random
import albumentations as alb
import copy
from albumentations import pytorch as albtorch
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils.class_weight import compute_class_weight
from pathflowai.losses import class2one_hot
import cv2
from scipy.ndimage.morphology import generate_binary_structure
from dask_image.ndmorph import binary_dilation
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
def RandomRotate90():
"""Transformer for random 90 degree rotation image.
Returns
-------
function
Transformer function for operation.
"""
return (lambda img: img.rotate(random.sample([0, 90, 180, 270], k=1)[0]))
def get_data_transforms(patch_size = None, mean=[], std=[], resize=False, transform_platform='torch', elastic=True, user_transforms=dict()):
"""Get data transformers for training test and validation sets.
Parameters
----------
patch_size:int
Original patch size being transformed.
mean:list of float
Mean RGB
std:list of float
Std RGB
resize:int
Which patch size to resize to.
transform_platform:str
Use pytorch or albumentation transforms.
elastic:bool
Whether to add elastic deformations from albumentations.
Returns
-------
dict
Transformers.
"""
transform_dict=dict(torch=dict(
colorjitter=lambda kargs: transforms.ColorJitter(**kargs),
hflip=lambda kargs: transforms.RandomHorizontalFlip(),
vflip=lambda kargs: transforms.RandomVerticalFlip(),
r90= lambda kargs: RandomRotate90()
),
albumentations=dict(
huesaturation=lambda kargs: alb.augmentations.transforms.HueSaturationValue(**kargs),
flip=lambda kargs: alb.augmentations.transforms.Flip(**kargs),
transpose=lambda kargs: alb.augmentations.transforms.Transpose(**kargs),
affine=lambda kargs: alb.augmentations.transforms.ShiftScaleRotate(**kargs),
r90=lambda kargs: alb.augmentations.transforms.RandomRotate90(**kargs),
elastic=lambda kargs: alb.augmentations.transforms.ElasticTransform(**kargs)
))
if 'normalization' in user_transforms:
mean=user_transforms['normalization'].pop('mean')
std=user_transforms['normalization'].pop('std')
del user_transforms['normalization']
default_transforms=dict() # add normalization custom
default_transforms['torch']=dict(
colorjitter=dict(brightness=0.8, contrast=0.8, saturation=0.8, hue=0.5),
hflip=dict(),
vflip=dict(),
r90=dict())
default_transforms['albumentations']=dict(
huesaturation=dict(hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20, p=0.5),
r90=dict(p=0.5),
elastic=dict(p=0.5))
main_transforms = default_transforms[transform_platform] if not user_transforms else user_transforms
print(main_transforms)
train_transforms=[transform_dict[transform_platform][k](v) for k,v in main_transforms.items()]
torch_init=[transforms.ToPILImage(),transforms.Resize((patch_size,patch_size)),transforms.CenterCrop(patch_size)]
albu_init=[alb.augmentations.transforms.Resize(patch_size, patch_size),
alb.augmentations.transforms.CenterCrop(patch_size, patch_size)]
tensor_norm=[transforms.ToTensor(),transforms.Normalize(mean if mean else [0.7, 0.6, 0.7], std if std is not None else [0.15, 0.15, 0.15])] #mean and standard deviations for lung adenocarcinoma resection slides
data_transforms = { 'torch': {
'train': transforms.Compose(torch_init+train_transforms+tensor_norm),
'val': transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((patch_size,patch_size)),
transforms.CenterCrop(patch_size),
transforms.ToTensor(),
transforms.Normalize(mean if mean else [0.7, 0.6, 0.7], std if std is not None else [0.15, 0.15, 0.15])
]),
'test': transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((patch_size,patch_size)),
transforms.CenterCrop(patch_size),
transforms.ToTensor(),
transforms.Normalize(mean if mean else [0.7, 0.6, 0.7], std if std is not None else [0.15, 0.15, 0.15])
]),
'pass': transforms.Compose([
transforms.ToPILImage(),
transforms.CenterCrop(patch_size),
transforms.ToTensor(),
])
},
'albumentations':{
'train':alb.core.composition.Compose(albu_init+train_transforms),
'val':alb.core.composition.Compose([
alb.augmentations.transforms.Resize(patch_size, patch_size),
alb.augmentations.transforms.CenterCrop(patch_size, patch_size)
]),
'test':alb.core.composition.Compose([
alb.augmentations.transforms.Resize(patch_size, patch_size),
alb.augmentations.transforms.CenterCrop(patch_size, patch_size)
]),
'normalize':transforms.Compose([transforms.Normalize(mean if mean else [0.7, 0.6, 0.7], std if std is not None else [0.15, 0.15, 0.15])])
}}
return data_transforms[transform_platform]
def create_transforms(mean, std):
"""Create transformers.
Parameters
----------
mean:list
See get_data_transforms.
std:list
See get_data_transforms.
Returns
-------
dict
Transformers.
"""
return get_data_transforms(patch_size = 224, mean=mean, std=std, resize=True)
def get_normalizer(normalization_file, dataset_opts):
"""Find mean and standard deviation of images in batches.
Parameters
----------
normalization_file:str
File to store normalization information.
dataset_opts:type
Dictionary storing information to create DynamicDataset class.
Returns
-------
dict
Stores RGB mean, stdev.
"""
if os.path.exists(normalization_file):
norm_dict = torch.load(normalization_file)
else:
norm_dict = {'normalization_file':normalization_file}
if 'normalization_file' in norm_dict:
transformers = get_data_transforms(patch_size = 224, mean=[], std=[], resize=True, transform_platform='torch')
dataset_opts['transformers']=transformers
#print(dict(pos_annotation_class=pos_annotation_class, segmentation=segmentation, patch_size=patch_size, fix_names=fix_names, other_annotations=other_annotations))
dataset = DynamicImageDataset(**dataset_opts)#nc.SafeDataset(DynamicImageDataset(**dataset_opts))
if dataset_opts['classify_annotations']:
dataset.binarize_annotations()
dataloader = DataLoader(dataset, batch_size=128, shuffle=True, num_workers=4)
all_mean = torch.tensor([0.,0.,0.],dtype=torch.float)#[]
all_std = torch.tensor([0.,0.,0.],dtype=torch.float)
if torch.cuda.is_available():
all_mean=all_mean.cuda()
all_std=all_std.cuda()
with torch.no_grad():
for i,(X,_) in enumerate(dataloader): # x,3,224,224
if torch.cuda.is_available():
X=X.cuda()
all_mean += torch.mean(X, (0,2,3))
all_std += torch.std(X, (0,2,3))
N=i+1
all_mean /= float(N) #(np.array(all_mean).mean(axis=0)).tolist()
all_std /= float(N) #(np.array(all_std).mean(axis=0)).tolist()
all_mean = all_mean.detach().cpu().numpy().tolist()
all_std = all_std.detach().cpu().numpy().tolist()
torch.save(dict(mean=all_mean,std=all_std),norm_dict['normalization_file'])
norm_dict = torch.load(norm_dict['normalization_file'])
return norm_dict
def segmentation_transform(img,mask, transformer, normalizer, alb_reduction):
"""Run albumentations and return an image and its segmentation mask.
Parameters
----------
img:array
Image as array
mask:array
Categorical pixel by pixel.
transformer :
Transformation object.
Returns
-------
tuple arrays
Image and mask array.
"""
res=transformer(True, image=img, mask=mask)
#res_mask_shape = res['mask'].size()
return normalizer(torch.tensor(np.transpose(res['image']/alb_reduction,axes=(2,0,1)),dtype=torch.float)).float(), torch.tensor(res['mask']).long()#.view(res_mask_shape[0],res_mask_shape[1],res_mask_shape[2])
class DilationJitter:
def __init__(self, dilation_jitter=dict(), segmentation=True, train_set=False):
if dilation_jitter and segmentation and train_set:
self.run_jitter=True
self.dilation_jitter=dilation_jitter
self.struct=generate_binary_structure(2,1) #structure=self.struct,
else:
self.run_jitter=False
def __call__(self, mask):
if self.run_jitter:
for k in self.dilation_jitter:
amount_jitter=int(round(max(np.random.normal(self.dilation_jitter[k]['mean'],
self.dilation_jitter[k]['std']),1)))
#print((mask==k).compute())
mask[binary_dilation(mask==k,structure=self.struct,iterations=amount_jitter)]=k
return mask
class DynamicImageDataset(Dataset):
"""Generate image dataset that accesses images and annotations via dask.
Parameters
----------
dataset_df:dataframe
Dataframe with WSI, which set it is in (train/test/val) and corresponding WSI labels if applicable.
set:str
Whether train, test, val or pass (normalization) set.
patch_info_file:str
SQL db with positional and annotation information on each slide.
transformers:dict
Contains transformers to apply on images.
input_dir:str
Directory where images comes from.
target_names:list/str
Names of initial targets, which may be modified.
pos_annotation_class:str
If selected and predicting on WSI, this class is labeled as a positive from the WSI, while the other classes are not.
other_annotations:list
Other annotations to consider from patch info db.
segmentation:bool
Conducting segmentation task?
patch_size:int
Patch size.
fix_names:bool
Whether to change the names of dataset_df.
target_segmentation_class:list
Now can be used for classification as well, matched with two below options, samples images only from this class. Can specify this and below two options multiple times.
target_threshold:list
Sampled only if above this threshold of occurence in the patches.
oversampling_factor:list
Over sample them at this amount.
n_segmentation_classes:int
Number classes to segment.
gdl:bool
Using generalized dice loss?
mt_bce:bool
For multi-target prediction tasks.
classify_annotations:bool
For classifying annotations.
"""
# when building transformers, need a resize patch size to make patches 224 by 224
#@pysnooper.snoop('init_data.log')
def __init__(self,dataset_df, set, patch_info_file, transformers, input_dir, target_names, pos_annotation_class, other_annotations=[], segmentation=False, patch_size=224, fix_names=True, target_segmentation_class=-1, target_threshold=0., oversampling_factor=1., n_segmentation_classes=4, gdl=False, mt_bce=False, classify_annotations=False, dilation_jitter=dict(), modify_patches=True):
#print('check',classify_annotations)
reduce_alb=True
self.patch_size=patch_size
self.input_dir = input_dir
self.alb_reduction=255. if reduce_alb else 1.
self.transformer=transformers[set]
original_set = copy.deepcopy(set)
if set=='pass':
set='train'
self.targets = target_names
self.mt_bce=mt_bce
self.set = set
self.segmentation = segmentation
self.alb_normalizer=None
if 'normalize' in transformers:
self.alb_normalizer = transformers['normalize']
if len(self.targets)==1:
self.targets = self.targets[0]
if original_set == 'pass':
self.transform_fn = lambda x,y: (self.transformer(x), torch.tensor(1.,dtype=torch.float))
else:
if self.segmentation:
self.transform_fn = lambda x,y: segmentation_transform(x,y, self.transformer, self.alb_normalizer, self.alb_reduction)
else:
if 'p' in dir(self.transformer):
self.transform_fn = lambda x,y: (self.alb_normalizer(torch.tensor(np.transpose(self.transformer(True, image=x)['image']/self.alb_reduction,axes=(2,0,1)),dtype=torch.float)), torch.from_numpy(y).float())
else:
self.transform_fn = lambda x,y: (self.transformer(x), torch.from_numpy(y).float())
self.image_set = dataset_df[dataset_df['set']==set]
if self.segmentation:
self.targets='target'
self.image_set[self.targets] = 1.
if not self.segmentation and fix_names:
self.image_set.loc[:,'ID'] = self.image_set['ID'].map(fix_name)
self.slide_info = pd.DataFrame(self.image_set.set_index('ID').loc[:,self.targets])
if self.mt_bce and not self.segmentation:
if pos_annotation_class:
self.targets = [pos_annotation_class]+list(other_annotations)
else:
self.targets = None
print(self.targets)
IDs = self.slide_info.index.tolist()
pi_dict=dict(input_info_db=patch_info_file,
slide_labels=self.slide_info,
pos_annotation_class=pos_annotation_class,
patch_size=patch_size,
segmentation=self.segmentation,
other_annotations=other_annotations,
target_segmentation_class=target_segmentation_class,
target_threshold=target_threshold,
classify_annotations=classify_annotations,
modify_patches=modify_patches)
self.patch_info = modify_patch_info(**pi_dict)
if self.segmentation and original_set!='pass':
#IDs = self.patch_info['ID'].unique()
self.segmentation_maps = {slide:npy2da(join(input_dir,'{}_mask.npy'.format(slide))) for slide in IDs}
self.slides = {slide:load_preprocessed_img(join(input_dir,'{}.zarr'.format(slide))) for slide in IDs}
#print(self.slide_info)
if original_set =='pass':
self.segmentation=False
#print(self.patch_info[self.targets].unique())
if oversampling_factor > 1:
self.patch_info = pd.concat([self.patch_info]*int(oversampling_factor),axis=0).reset_index(drop=True)
elif oversampling_factor < 1:
self.patch_info = self.patch_info.sample(frac=oversampling_factor).reset_index(drop=True)
self.length = self.patch_info.shape[0]
self.n_segmentation_classes = n_segmentation_classes
self.gdl=gdl if self.segmentation else False
self.binarized=False
self.classify_annotations=classify_annotations
print(self.targets)
self.dilation_jitter=DilationJitter(dilation_jitter,self.segmentation,(original_set=='train'))
if not self.targets:
self.targets = [pos_annotation_class]+list(other_annotations)
def concat(self, other_dataset):
"""Concatenate this dataset with others. Updates its own internal attributes.
Parameters
----------
other_dataset:DynamicImageDataset
Other image dataset.
"""
self.patch_info = pd.concat([self.patch_info, other_dataset.patch_info],axis=0).reset_index(drop=True)
self.length = self.patch_info.shape[0]
if self.segmentation:
self.segmentation_maps.update(other_dataset.segmentation_maps)
#print(self.segmentation_maps.keys())
def retain_ID(self, ID):
"""Reduce the sample set to just images from one ID.
Parameters
----------
ID:str
Basename/ID to predict on.
Returns
-------
self
"""
self.patch_info=self.patch_info.loc[self.patch_info['ID']==ID]
self.length = self.patch_info.shape[0]
self.segmentation_maps={ID:self.segmentation_maps[ID]}
return self
def split_by_ID(self):
"""Generator similar to groupby, but splits up by ID, generates (ID,data) using retain_ID.
Returns
-------
generator
ID, DynamicDataset
"""
for ID in self.patch_info['ID'].unique():
new_dataset = copy.deepcopy(self)
yield ID, new_dataset.retain_ID(ID)
def select_IDs(self, IDs):
for ID in IDs:
if ID in self.patch_info['ID'].unique():
new_dataset = copy.deepcopy(self)
yield ID, new_dataset.retain_ID(ID)
def get_class_weights(self, i=0):#[0,1]
"""Weight loss function with weights inversely proportional to the class appearence.
Parameters
----------
i:int
If multi-target, class used for weighting.
Returns
-------
self
Dataset.
"""
if self.segmentation:
label_counts=self.patch_info[list(map(str,list(range(self.n_segmentation_classes))))].sum(axis=0).values
freq = label_counts/sum(label_counts)
weights=1./(freq)
elif self.mt_bce:
weights=1./(self.patch_info.loc[:,self.targets].sum(axis=0).values)
weights=weights/sum(weights)
else:
if self.binarized and len(self.targets)>1:
y=np.argmax(self.patch_info.loc[:,self.targets].values,axis=1)
elif (type(self.targets)==type('')):
y=self.patch_info.loc[:,self.targets]
else:
y=self.patch_info.loc[:,self.targets[i]]
y=y.values.astype(int).flatten()
weights=compute_class_weight(class_weight='balanced',classes=np.unique(y),y=y)
return weights
def binarize_annotations(self, binarizer=None, num_targets=1, binary_threshold=0.):
"""Label binarize some annotations or threshold them if classifying slide annotations.
Parameters
----------
binarizer:LabelBinarizer
Binarizes the labels of a column(s)
num_targets:int
Number of desired targets to preidict on.
binary_threshold:float
Amount of annotation in patch before positive annotation.
Returns
-------
binarizer
"""
annotations = self.patch_info['annotation']
annots=[annot for annot in list(self.patch_info.iloc[:,6:]) if annot !='area']
if not self.mt_bce and num_targets > 1:
if binarizer == None:
self.binarizer = LabelBinarizer().fit(annotations)
else:
self.binarizer = copy.deepcopy(binarizer)
self.targets = self.binarizer.classes_
annotation_labels = pd.DataFrame(self.binarizer.transform(annotations),index=self.patch_info.index,columns=self.targets).astype(float)
for col in list(annotation_labels):
if col in list(self.patch_info):
self.patch_info.loc[:,col]=annotation_labels[col].values
else:
self.patch_info[col]=annotation_labels[col].values
else:
self.binarizer=None
self.targets=annots
if num_targets == 1:
self.targets = [self.targets[-1]]
if binary_threshold>0.:
self.patch_info.loc[:,self.targets]=(self.patch_info[self.targets]>=binary_threshold).values.astype(np.float32)
print(self.targets)
#self.patch_info = pd.concat([self.patch_info,annotation_labels],axis=1)
self.binarized=True
return self.binarizer
def subsample(self, p):
"""Sample subset of dataset.
Parameters
----------
p:float
Fraction to subsample.
"""
np.random.seed(42)
self.patch_info = self.patch_info.sample(frac=p)
self.length = self.patch_info.shape[0]
def update_dataset(self, input_dir, new_db, prediction_basename=[]):
"""Experimental. Only use for segmentation for now."""
self.input_dir=input_dir
self.patch_info=load_sql_df(new_db, self.patch_size)
IDs = self.patch_info['ID'].unique()
self.slides = {slide:load_preprocessed_img(join(self.input_dir,'{}.zarr'.format(slide))) for slide in IDs}
if self.segmentation:
if prediction_basename:
self.segmentation_maps = {slide:npy2da(join(self.input_dir,'{}_mask.npy'.format(slide))) for slide in IDs if slide in prediction_basename}
else:
self.segmentation_maps = {slide:npy2da(join(self.input_dir,'{}_mask.npy'.format(slide))) for slide in IDs}
self.length = self.patch_info.shape[0]
#@pysnooper.snoop("getitem.log")
def __getitem__(self, i):
patch_info = self.patch_info.iloc[i]
ID = patch_info['ID']
xs = patch_info['x']
ys = patch_info['y']
patch_size = patch_info['patch_size']
if xs==np.nan:
entire_image=True
else:
entire_image=False
targets=self.targets
use_long=False
if not self.segmentation:
y = patch_info.loc[list(self.targets) if not isinstance(self.targets,str) else self.targets]
if isinstance(y,pd.Series):
y=y.values.astype(float)
if self.binarized and not self.mt_bce and len(y)>1:
y=np.array(y.argmax())
use_long=True
y=np.array(y)
if not y.shape:
y=y.reshape(1)
if self.segmentation:
arr=self.segmentation_maps[ID]
if not entire_image:
arr=arr[xs:xs+patch_size,ys:ys+patch_size]
arr=self.dilation_jitter(arr)
y=(y if not self.segmentation else np.array(arr))
#print(y)
arr=self.slides[ID]
if not entire_image:
arr=arr[xs:xs+patch_size,ys:ys+patch_size,:3]
image, y = self.transform_fn(arr.compute().astype(np.uint8), y)#.unsqueeze(0) # transpose .transpose([1,0,2])
if not self.segmentation and not self.mt_bce and self.classify_annotations and use_long:
y=y.long()
#image_size=image.size()
if self.gdl:
y=class2one_hot(y, self.n_segmentation_classes)
# y=one_hot2dist(y)
return image, y
def __len__(self):
return self.length
class NPYDataset(Dataset):
def __init__(self, patch_info, patch_size, npy_file, transform, mmap=False):
self.ID=os.path.basename(npy_file).split('.')[0]
patch_info=patch_info=load_sql_df(patch_info,patch_size)
self.patch_info=patch_info.loc[patch_info["ID"]==self.ID].reset_index()
self.X=np.load(npy_file,mmap_mode=(None if not mmap else 'r+'))
self.transform=transform
def __getitem__(self,i):
x,y,patch_size=self.patch_info.loc[i,["x","y","patch_size"]]
return self.transform(self.X[x:x+patch_size,y:y+patch_size])
def __len__(self):
return self.patch_info.shape[0]
def embed(self,model,batch_size,out_dir):
Z=[]
dataloader=DataLoader(self,batch_size=batch_size,shuffle=False)
n_batches=len(self)//batch_size
with torch.no_grad():
for i,X in enumerate(dataloader):
if torch.cuda.is_available():
X=X.cuda()
z=model(X).detach().cpu().numpy()
Z.append(z)
print(f"Processed batch {i}/{n_batches}")
Z=np.vstack(Z)
torch.save(dict(embeddings=Z,patch_info=self.patch_info),os.path.join(out_dir,f"{self.ID}.pkl"))
print("Embeddings saved")
quit()