-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
1141 lines (1025 loc) · 38.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
utils.py
=======================
General utilities that still need to be broken up into preprocessing, machine learning input preparation, and output submodules.
"""
import numpy as np
from bs4 import BeautifulSoup
from shapely.geometry import Point
from shapely.geometry.polygon import Polygon
import glob
from os.path import join
import plotly.graph_objs as go
import plotly.offline as py
import pandas as pd, numpy as np
import scipy.sparse as sps
from PIL import Image, ImageDraw
Image.MAX_IMAGE_PIXELS=1e10
import numpy as np
import scipy.sparse as sps
from os.path import join
import os, subprocess, pandas as pd
import sqlite3
import torch
from torch.utils.data import Dataset#, DataLoader
from sklearn.model_selection import train_test_split
import pysnooper
from shapely.ops import unary_union, polygonize
from shapely.geometry import MultiPolygon, LineString
import numpy as np
import dask.array as da
import dask
import openslide
from openslide import deepzoom
#import xarray as xr, sparse
import pickle
import copy
import h5py
import nonechucks as nc
from nonechucks import SafeDataLoader as DataLoader
import cv2
import numpy as np
from skimage.morphology import watershed
from skimage.feature import peak_local_max
from scipy.ndimage import label as scilabel, distance_transform_edt
import scipy.ndimage as ndimage
from skimage import morphology as morph
from scipy.ndimage.morphology import binary_fill_holes as fill_holes
from skimage.filters import threshold_otsu, rank
from skimage.morphology import convex_hull_image, remove_small_holes
from skimage import measure
import xmltodict as xd
from collections import defaultdict
def load_sql_df(sql_file, patch_size):
"""Load pandas dataframe from SQL, accessing particular patch size within SQL.
Parameters
----------
sql_file:str
SQL db.
patch_size:int
Patch size.
Returns
-------
dataframe
Patch level information.
"""
conn = sqlite3.connect(sql_file)
df=pd.read_sql('select * from "{}";'.format(patch_size),con=conn)
conn.close()
return df
def df2sql(df, sql_file, patch_size, mode='replace'):
"""Write dataframe containing patch level information to SQL db.
Parameters
----------
df:dataframe
Dataframe containing patch information.
sql_file:str
SQL database.
patch_size:int
Size of patches.
mode:str
Replace or append.
"""
conn = sqlite3.connect(sql_file)
df.set_index('index').to_sql(str(patch_size), con=conn, if_exists=mode)
conn.close()
#########
# https://github.com/qupath/qupath/wiki/Supported-image-formats
def svs2dask_array(svs_file, tile_size=1000, overlap=0, remove_last=True, allow_unknown_chunksizes=False, transpose=False):
"""Convert SVS, TIF or TIFF to dask array.
Parameters
----------
svs_file : str
Image file.
tile_size : int
Size of chunk to be read in.
overlap : int
Do not modify, overlap between neighboring tiles.
remove_last : bool
Remove last tile because it has a custom size.
allow_unknown_chunksizes : bool
Allow different chunk sizes, more flexible, but slowdown.
Returns
-------
arr : dask.array.Array
A Dask Array representing the contents of the image file.
>>> arr = svs2dask_array(svs_file, tile_size=1000, overlap=0, remove_last=True, allow_unknown_chunksizes=False)
>>> arr2 = arr.compute()
>>> arr3 = to_pil(cv2.resize(arr2, dsize=(1440, 700), interpolation=cv2.INTER_CUBIC))
>>> arr3.save(test_image_name)
"""
# https://github.com/jlevy44/PathFlowAI/blob/master/pathflowai/utils.py
img = openslide.open_slide(svs_file)
if type(img) is openslide.OpenSlide:
gen = deepzoom.DeepZoomGenerator(
img, tile_size=tile_size, overlap=overlap, limit_bounds=True)
max_level = len(gen.level_dimensions) - 1
n_tiles_x, n_tiles_y = gen.level_tiles[max_level]
@dask.delayed(pure=True)
def get_tile(level, column, row):
tile = gen.get_tile(level, (column, row))
return np.array(tile).transpose((1, 0, 2))
sample_tile_shape = get_tile(max_level, 0, 0).shape.compute()
rows = range(n_tiles_y - (0 if not remove_last else 1))
cols = range(n_tiles_x - (0 if not remove_last else 1))
arr = da.concatenate([da.concatenate([da.from_delayed(get_tile(max_level, col, row), sample_tile_shape, np.uint8) for row in rows],
allow_unknown_chunksizes=allow_unknown_chunksizes, axis=1) for col in cols], allow_unknown_chunksizes=allow_unknown_chunksizes)
if transpose:
arr=arr.transpose([1, 0, 2])
return arr
else: # img is instance of openslide.ImageSlide
return dask_image.imread.imread(svs_file)
def img2npy_(input_dir,basename, svs_file):
"""Convert SVS, TIF, TIFF to NPY.
Parameters
----------
input_dir:str
Output file dir.
basename:str
Basename of output file
svs_file:str
SVS, TIF, TIFF file input.
Returns
-------
str
NPY output file.
"""
npy_out_file = join(input_dir,'{}.npy'.format(basename))
arr = svs2dask_array(svs_file)
np.save(npy_out_file,arr.compute())
return npy_out_file
def load_image(svs_file):
"""Load SVS, TIF, TIFF
Parameters
----------
svs_file:type
Description of parameter `svs_file`.
Returns
-------
type
Description of returned object.
"""
im = Image.open(svs_file)
return np.transpose(np.array(im),(1,0)), im.size
def create_purple_mask(arr, img_size=None, sparse=True):
"""Create a gray scale intensity mask. This will be changed soon to support other thresholding QC methods.
Parameters
----------
arr:dask.array
Dask array containing image information.
img_size:int
Deprecated.
sparse:bool
Deprecated
Returns
-------
dask.array
Intensity, grayscale array over image.
"""
r,b,g=arr[:,:,0],arr[:,:,1],arr[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
#rb_avg = (r+b)/2
mask= ((255.-gray))# >= threshold)#(r > g - 10) & (b > g - 10) & (rb_avg > g + 20)#np.vectorize(is_purple)(arr).astype(int)
if 0 and sparse:
mask = mask.nonzero()
mask = np.array([mask[0].compute(), mask[1].compute()]).T
#mask = (np.ones(len(mask[0])),mask)
#mask = sparse.COO.from_scipy_sparse(sps.coo_matrix(mask, img_size, dtype=np.uint8).tocsr())
return mask
def add_purple_mask(arr):
"""Optional add intensity mask to the dask array.
Parameters
----------
arr:dask.array
Image data.
Returns
-------
array
Image data with intensity added as forth channel.
"""
return np.concatenate((arr,create_purple_mask(arr)),axis=0)
def create_sparse_annotation_arrays(xml_file, img_size, annotations=[], transpose_annotations=False):
"""Convert annotation xml to shapely objects and store in dictionary.
Parameters
----------
xml_file:str
XML file containing annotations.
img_size:int
Deprecated.
annotations:list
Annotations to look for in xml export.
Returns
-------
dict
Dictionary with annotation-shapely object pairs.
"""
interior_points_dict = {annotation:parse_coord_return_boxes(xml_file, annotation_name = annotation, return_coords = False, transpose_annotations=transpose_annotations) for annotation in annotations}#grab_interior_points(xml_file, img_size, annotations=annotations) if annotations else {}
return {annotation:interior_points_dict[annotation] for annotation in annotations}#sparse.COO.from_scipy_sparse((sps.coo_matrix(interior_points_dict[annotation],img_size, dtype=np.uint8) if interior_points_dict[annotation] not None else sps.coo_matrix(img_size, dtype=np.uint8)).tocsr()) for annotation in annotations} # [sps.coo_matrix(img_size, dtype=np.uint8)]+
def load_image(svs_file):
return (npy2da(svs_file) if (svs_file.endswith('.npy') or svs_file.endswith('.h5')) else svs2dask_array(svs_file, tile_size=1000, overlap=0))
def load_preprocessed_img(img_file):
if img_file.endswith('.zarr') and not os.path.exists(f"{img_file}/.zarray"):
img_file=img_file.replace(".zarr",".npy")
return npy2da(img_file) if (img_file.endswith('.npy') or img_file.endswith('.h5')) else da.from_zarr(img_file)
def load_process_image(svs_file, xml_file=None, npy_mask=None, annotations=[], transpose_annotations=False):
"""Load SVS-like image (including NPY), segmentation/classification annotations, generate dask array and dictionary of annotations.
Parameters
----------
svs_file:str
Image file
xml_file:str
Annotation file.
npy_mask:array
Numpy segmentation mask.
annotations:list
List of annotations in xml.
Returns
-------
array
Dask array of image.
dict
Annotation masks.
"""
arr = load_image(svs_file)#npy2da(svs_file) if (svs_file.endswith('.npy') or svs_file.endswith('.h5')) else svs2dask_array(svs_file, tile_size=1000, overlap=0)#load_image(svs_file)
img_size = arr.shape[:2]
masks = {}#{'purple': create_purple_mask(arr,img_size,sparse=False)}
if xml_file is not None:
masks.update(create_sparse_annotation_arrays(xml_file, img_size, annotations=annotations, transpose_annotations=transpose_annotations))
if npy_mask is not None:
masks.update({'annotations':npy_mask})
#data = dict(image=(['x','y','rgb'],arr),**masks)
#data_arr = {'image':xr.Variable(['x','y','color'], arr)}
#purple_arr = {'mask':xr.Variable(['x','y'], masks['purple'])}
#mask_arr = {m:xr.Variable(['row','col'],masks[m]) for m in masks if m != 'purple'} if 'annotations' not in annotations else {'annotations':xr.Variable(['x','y'],masks['annotations'])}
#masks['purple'] = masks['purple'].reshape(*masks['purple'].shape,1)
#arr = da.concatenate([arr,masks.pop('purple')],axis=2)
return arr, masks#xr.Dataset.from_dict({k:v for k,v in list(data_arr.items())+list(purple_arr.items())+list(mask_arr.items())})#list(dict(image=data_arr,purple=purple_arr,annotations=mask_arr).items()))#arr, masks
def save_dataset(arr, masks, out_zarr, out_pkl, no_zarr):
"""Saves dask array image, dictionary of annotations to zarr and pickle respectively.
Parameters
----------
arr:array
Image.
masks:dict
Dictionary of annotation shapes.
out_zarr:str
Zarr output file for image.
out_pkl:str
Pickle output file.
"""
if not no_zarr:
arr.astype('uint8').to_zarr(out_zarr, overwrite=True)
pickle.dump(masks,open(out_pkl,'wb'))
#dataset.to_netcdf(out_netcdf, compute=False)
#pickle.dump(dataset, open(out_pkl,'wb'), protocol=-1)
def run_preprocessing_pipeline(svs_file, xml_file=None, npy_mask=None, annotations=[], out_zarr='output_zarr.zarr', out_pkl='output.pkl',no_zarr=False,transpose_annotations=False):
"""Run preprocessing pipeline. Store image into zarr format, segmentations maintain as npy, and xml annotations as pickle.
Parameters
----------
svs_file:str
Input image file.
xml_file:str
Input annotation file.
npy_mask:str
NPY segmentation mask.
annotations:list
List of annotations.
out_zarr:str
Output zarr for image.
out_pkl:str
Output pickle for annotations.
"""
#save_dataset(load_process_image(svs_file, xml_file, npy_mask, annotations), out_netcdf)
arr, masks = load_process_image(svs_file, xml_file, npy_mask, annotations, transpose_annotations)
save_dataset(arr, masks,out_zarr, out_pkl, no_zarr)
###################
def adjust_mask(mask_file, dask_img_array_file, out_npy, n_neighbors):
"""Fixes segmentation masks to reduce coarse annotations over empty regions.
Parameters
----------
mask_file:str
NPY segmentation mask.
dask_img_array_file:str
Dask image file.
out_npy:str
Output numpy file.
n_neighbors:int
Number nearest neighbors for dilation and erosion of mask from background to not background.
Returns
-------
str
Output numpy file.
"""
from dask_image.ndmorph import binary_opening
from dask.distributed import Client
#c=Client()
dask_img_array=da.from_zarr(dask_img_array_file)
mask=npy2da(mask_file)
is_tissue_mask = mask>0.
is_tissue_mask_img=((dask_img_array[...,0]>200.) & (dask_img_array[...,1]>200.)& (dask_img_array[...,2]>200.)) == 0
opening=binary_opening(is_tissue_mask_img,structure=da.ones((n_neighbors,n_neighbors)))#,mask=is_tissue_mask)
mask[(opening==0)&(is_tissue_mask==1)]=0
np.save(out_npy,mask.compute())
#c.close()
return out_npy
def filter_grays(rgb, tolerance=15, output_type="bool"):
""" https://github.com/deroneriksson/python-wsi-preprocessing/blob/master/deephistopath/wsi/filter.py
Create a mask to filter out pixels where the red, green, and blue channel values are similar.
Args:
np_img: RGB image as a NumPy array.
tolerance: Tolerance value to determine how similar the values must be in order to be filtered out
output_type: Type of array to return (bool, float, or uint8).
Returns:
NumPy array representing a mask where pixels with similar red, green, and blue values have been masked out.
"""
(h, w, c) = rgb.shape
rgb = rgb.astype(np.int)
rg_diff = np.abs(rgb[:, :, 0] - rgb[:, :, 1]) <= tolerance
rb_diff = np.abs(rgb[:, :, 0] - rgb[:, :, 2]) <= tolerance
gb_diff = np.abs(rgb[:, :, 1] - rgb[:, :, 2]) <= tolerance
result = ~(rg_diff & rb_diff & gb_diff)
if output_type == "bool":
pass
elif output_type == "float":
result = result.astype(float)
else:
result = result.astype("uint8") * 255
return result
def label_objects(img,
otsu=True,
min_object_size=100000,
threshold=240,
connectivity=8,
kernel=61,
keep_holes=False,
max_hole_size=0,
gray_before_close=False,
blur_size=0):
I=cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
gray_mask=filter_grays(img, output_type="bool")
if otsu: threshold = threshold_otsu(I)
BW = (I<threshold).astype(bool)
if gray_before_close: BW=BW&gray_mask
if kernel>0: BW = morph.binary_closing(BW, morph.disk(kernel))#square
if not gray_before_close: BW=BW&gray_mask
if blur_size: BW=(cv2.blur(BW.astype(np.uint8), (blur_size,blur_size))==1)
labels = scilabel(BW)[0]
labels=morph.remove_small_objects(labels, min_size=min_object_size, connectivity = connectivity, in_place=True)
if not keep_holes and max_hole_size:
BW=morph.remove_small_objects(labels==0, min_size=max_hole_size, connectivity = connectivity, in_place=True)==False#remove_small_holes(labels,area_threshold=max_hole_size, connectivity = connectivity, in_place=True)>0
elif keep_holes:
BW=labels>0
else:
BW=fill_holes(labels)
labels = scilabel(BW)[0]
return(BW!=0),labels
def generate_tissue_mask(arr,
compression=8,
otsu=False,
threshold=220,
connectivity=8,
kernel=61,
min_object_size=100000,
return_convex_hull=False,
keep_holes=False,
max_hole_size=0,
gray_before_close=False,
blur_size=0):
img=cv2.resize(arr,None,fx=1/compression,fy=1/compression,interpolation=cv2.INTER_CUBIC)
WB, lbl=label_objects(img, otsu=otsu, min_object_size=min_object_size, threshold=threshold, connectivity=connectivity, kernel=kernel,keep_holes=keep_holes,max_hole_size=max_hole_size, gray_before_close=gray_before_close,blur_size=blur_size)
if return_convex_hull:
for i in range(1,lbl.max()+1):
WB=WB+convex_hull_image(lbl==i)
WB=WB>0
WB=cv2.resize(WB.astype(np.uint8),arr.shape[:2][::-1],interpolation=cv2.INTER_CUBIC)>0
return WB
###################
def process_svs(svs_file, xml_file, annotations=[], output_dir='./'):
"""Store images into npy format and store annotations into pickle dictionary.
Parameters
----------
svs_file:str
Image file.
xml_file:str
Annotations file.
annotations:list
List of annotations in image.
output_dir:str
Output directory.
"""
os.makedirs(output_dir,exist_ok=True)
basename = svs_file.split('/')[-1].split('.')[0]
arr, masks = load_process_image(svs_file, xml_file)
np.save(join(output_dir,'{}.npy'.format(basename)),arr)
pickle.dump(masks, open(join(output_dir,'{}.pkl'.format(basename)),'wb'), protocol=-1)
####################
def load_dataset(in_zarr, in_pkl):
"""Load ZARR image and annotations pickle.
Parameters
----------
in_zarr:str
Input image.
in_pkl:str
Input annotations.
Returns
-------
dask.array
Image array.
dict
Annotations dictionary.
"""
if not os.path.exists(in_pkl):
annotations={'annotations':''}
else:
annotations=pickle.load(open(in_pkl,'rb'))
return (da.from_zarr(in_zarr) if in_zarr.endswith('.zarr') else load_image(in_zarr)), annotations#xr.open_dataset(in_netcdf)
def is_valid_patch(xs,ys,patch_size,purple_mask,intensity_threshold,threshold=0.5):
"""Deprecated, computes whether patch is valid."""
print(xs,ys)
return (purple_mask[xs:xs+patch_size,ys:ys+patch_size]>=intensity_threshold).mean() > threshold
def fix_polygon(poly):
if not poly.is_valid:
#print(poly.exterior.coords.xy)
poly=LineString(np.vstack(poly.exterior.coords.xy).T)
poly=unary_union(LineString(poly.coords[:] + poly.coords[0:1]))
#arr.geometry = arr.buffer(0)
poly = [p for p in polygonize(poly)]
else:
poly = [poly]
return poly
def replace(txt,d=dict()):
for k in d:
txt=txt.replace(k,d[k])
return txt
def xml2dict_ASAP(xml="",replace_d=dict()):
print(xml)
with open(xml,"rb") as f:
d=xd.parse(f)
d_h=None
d_h=d['ASAP_Annotations']['AnnotationGroups']
d_final=defaultdict(list)
try:
for i,annotation in enumerate(d['ASAP_Annotations']["Annotations"]["Annotation"]):
try:
k="{}".format(replace(annotation["@PartOfGroup"],replace_d))
d_final[k].append(np.array([(float(coord["@X"]),float(coord["@Y"])) for coord in annotation["Coordinates"]["Coordinate"]]))
except:
print(i)
except:
print(d['ASAP_Annotations']["Annotations"])
d_final=dict(d_final)
return d_final,d_h
#@pysnooper.snoop("extract_patch.log")
def extract_patch_information(basename,
input_dir='./',
annotations=[],
threshold=0.5,
patch_size=224,
generate_finetune_segmentation=False,
target_class=0,
intensity_threshold=100.,
target_threshold=0.,
adj_mask='',
basic_preprocess=False,
tries=0,
entire_image=False,
svs_file='',
transpose_annotations=False,
get_tissue_mask=False,
otsu=False,
compression=8.,
return_convex_hull=False,
keep_holes=False,
max_hole_size=0,
gray_before_close=False,
kernel=61,
min_object_size=100000,
blur_size=0):
"""Final step of preprocessing pipeline. Break up image into patches, include if not background and of a certain intensity, find area of each annotation type in patch, spatial information, image ID and dump data to SQL table.
Parameters
----------
basename:str
Patient ID.
input_dir:str
Input directory.
annotations:list
List of annotations to record, these can be different tissue types, must correspond with XML labels.
threshold:float
Value between 0 and 1 that indicates the minimum amount of patch that musn't be background for inclusion.
patch_size:int
Patch size of patches; this will become one of the tables.
generate_finetune_segmentation:bool
Deprecated.
target_class:int
Number of segmentation classes desired, from 0th class to target_class-1 will be annotated in SQL.
intensity_threshold:float
Value between 0 and 255 that represents minimum intensity to not include as background. Will be modified with new transforms.
target_threshold:float
Deprecated.
adj_mask:str
Adjusted mask if performed binary opening operations in previous preprocessing step.
basic_preprocess:bool
Do not store patch level information.
tries:int
Number of tries in case there is a Dask timeout, run again.
Returns
-------
dataframe
Patch information.
"""
#from collections import OrderedDict
#annotations=OrderedDict(annotations)
#from dask.multiprocessing import get
import dask
import time
from dask import dataframe as dd
import dask.array as da
import multiprocessing
from shapely.ops import unary_union
from shapely.geometry import MultiPolygon
from itertools import product
from functools import reduce
#from distributed import Client,LocalCluster
# max_tries=4
# kargs=dict(basename=basename, input_dir=input_dir, annotations=annotations, threshold=threshold, patch_size=patch_size, generate_finetune_segmentation=generate_finetune_segmentation, target_class=target_class, intensity_threshold=intensity_threshold, target_threshold=target_threshold, adj_mask=adj_mask, basic_preprocess=basic_preprocess, tries=tries, svs_file=svs_file, transpose_annotations=transpose_annotations)
# try:
#,
# 'distributed.scheduler.allowed-failures':20,
# 'num-workers':20}):
#cluster=LocalCluster()
#cluster.adapt(minimum=10, maximum=100)
#cluster = LocalCluster(threads_per_worker=1, n_workers=20, memory_limit="80G")
#client=Client()#Client(cluster)#processes=True)#cluster,
in_zarr=join(input_dir,'{}.zarr'.format(basename))
in_zarr=(in_zarr if os.path.exists(in_zarr) else svs_file)
arr, masks = load_dataset(in_zarr,join(input_dir,'{}_mask.pkl'.format(basename)))
if 'annotations' in masks:
segmentation = True
#if generate_finetune_segmentation:
mask=join(input_dir,'{}_mask.npy'.format(basename))
mask = (mask if os.path.exists(mask) else mask.replace('.npy','.npz'))
segmentation_mask = (npy2da(mask) if not adj_mask else adj_mask)
if transpose_annotations:
segmentation_mask=segmentation_mask.transpose([1,0,2])
else:
segmentation = False
annotations=list(annotations)
print(annotations)
#masks=np.load(masks['annotations'])
#npy_file = join(input_dir,'{}.npy'.format(basename))
purple_mask = create_purple_mask(arr) if not get_tissue_mask else da.from_array(generate_tissue_mask(arr.compute(),compression=compression,
otsu=otsu,
threshold=255-intensity_threshold,
connectivity=8,
kernel=kernel,
min_object_size=min_object_size,
return_convex_hull=return_convex_hull,
keep_holes=keep_holes,
max_hole_size=max_hole_size,
gray_before_close=gray_before_close,
blur_size=blur_size))
if get_tissue_mask:
intensity_threshold=0.5
x_max = float(arr.shape[0])
y_max = float(arr.shape[1])
x_steps = int((x_max-patch_size) / patch_size )
y_steps = int((y_max-patch_size) / patch_size )
for annotation in annotations:
if masks[annotation]:
masks[annotation]=list(reduce(lambda x,y: x+y, [fix_polygon(poly) for poly in masks[annotation]]))
try:
masks[annotation]=[unary_union(masks[annotation])] if masks[annotation] else []
except:
masks[annotation]=[MultiPolygon(masks[annotation])] if masks[annotation] else []
patch_info=pd.DataFrame([([basename,i*patch_size,j*patch_size,patch_size,'NA']+[0.]*(target_class if segmentation else len(annotations))) for i,j in product(range(x_steps+1),range(y_steps+1))],columns=(['ID','x','y','patch_size','annotation']+(annotations if not segmentation else list([str(i) for i in range(target_class)]))))#[dask.delayed(return_line_info)(i,j) for (i,j) in product(range(x_steps+1),range(y_steps+1))]
if entire_image:
patch_info.iloc[:,1:4]=np.nan
patch_info=pd.DataFrame(patch_info.iloc[0,:])
else:
if basic_preprocess:
patch_info=patch_info.iloc[:,:4]
valid_patches=[]
for xs,ys in patch_info[['x','y']].values.tolist():
valid_patches.append(((purple_mask[xs:xs+patch_size,ys:ys+patch_size]>=intensity_threshold).mean() > threshold) if intensity_threshold > 0 else True) # dask.delayed(is_valid_patch)(xs,ys,patch_size,purple_mask,intensity_threshold,threshold)
valid_patches=np.array(da.compute(*valid_patches))
print('Valid Patches Complete')
#print(valid_patches)
patch_info=patch_info.loc[valid_patches]
if not basic_preprocess:
area_info=[]
if segmentation:
patch_info.loc[:,'annotation']='segment'
for xs,ys in patch_info[['x','y']].values.tolist():
xf=xs+patch_size
yf=ys+patch_size
#print(xs,ys)
area_info.append(da.histogram(segmentation_mask[xs:xf,ys:yf],range=[0,target_class-1],bins=target_class)[0])
#area_info.append(dask.delayed(seg_line)(xs,ys,patch_size,segmentation_mask,target_class))
else:
for xs,ys in patch_info[['x','y']].values.tolist():
area_info.append([dask.delayed(is_coords_in_box)([xs,ys],patch_size,masks[annotation]) for annotation in annotations])
#area_info=da.concatenate(area_info,axis=0).compute()
area_info=np.array(dask.compute(*area_info)).astype(float)#da.concatenate(area_info,axis=0).compute(dtype=np.float16,scheduler='threaded')).astype(np.float16)
print('Area Info Complete')
area_info = area_info/(patch_size**2)
patch_info.iloc[:,5:]=area_info
#print(patch_info.dtypes)
annot=list(patch_info.iloc[:,5:])
patch_info.loc[:,'annotation']=np.vectorize(lambda i: annot[patch_info.iloc[i,5:].values.argmax()])(np.arange(patch_info.shape[0]))#patch_info[np.arange(target_class).astype(str).tolist()].values.argmax(1).astype(str)
#client.close()
# except Exception as e:
# print(e)
# kargs['tries']+=1
# if kargs['tries']==max_tries:
# raise Exception('Exceeded past maximum number of tries.')
# else:
# print('Restarting preprocessing again.')
# extract_patch_information(**kargs)
# print(patch_info)
return patch_info
def generate_patch_pipeline(basename,
input_dir='./',
annotations=[],
threshold=0.5,
patch_size=224,
out_db='patch_info.db',
generate_finetune_segmentation=False,
target_class=0,
intensity_threshold=100.,
target_threshold=0.,
adj_mask='',
basic_preprocess=False,
entire_image=False,
svs_file='',
transpose_annotations=False,
get_tissue_mask=False,
otsu=False,
compression=8.,
return_convex_hull=False,
keep_holes=False,
max_hole_size=0,
gray_before_close=False,
kernel=61,
min_object_size=100000,
blur_size=0):
"""Find area coverage of each annotation in each patch and store patch information into SQL db.
Parameters
----------
basename:str
Patient ID.
input_dir:str
Input directory.
annotations:list
List of annotations to record, these can be different tissue types, must correspond with XML labels.
threshold:float
Value between 0 and 1 that indicates the minimum amount of patch that musn't be background for inclusion.
patch_size:int
Patch size of patches; this will become one of the tables.
out_db:str
Output SQL database.
generate_finetune_segmentation:bool
Deprecated.
target_class:int
Number of segmentation classes desired, from 0th class to target_class-1 will be annotated in SQL.
intensity_threshold:float
Value between 0 and 255 that represents minimum intensity to not include as background. Will be modified with new transforms.
target_threshold:float
Deprecated.
adj_mask:str
Adjusted mask if performed binary opening operations in previous preprocessing step.
basic_preprocess:bool
Do not store patch level information.
"""
patch_info = extract_patch_information(basename,
input_dir,
annotations,
threshold,
patch_size,
generate_finetune_segmentation=generate_finetune_segmentation,
target_class=target_class,
intensity_threshold=intensity_threshold,
target_threshold=target_threshold,
adj_mask=adj_mask,
basic_preprocess=basic_preprocess,
entire_image=entire_image,
svs_file=svs_file,
transpose_annotations=transpose_annotations,
get_tissue_mask=get_tissue_mask,
otsu=otsu,
compression=compression,
return_convex_hull=return_convex_hull,
keep_holes=keep_holes,
max_hole_size=max_hole_size,
gray_before_close=gray_before_close,
kernel=kernel,
min_object_size=min_object_size,
blur_size=blur_size)
conn = sqlite3.connect(out_db)
patch_info.to_sql(str(patch_size), con=conn, if_exists='append')
conn.close()
# now output csv
def save_all_patch_info(basenames, input_dir='./', annotations=[], threshold=0.5, patch_size=224, output_pkl='patch_info.pkl'):
"""Deprecated."""
df=pd.concat([extract_patch_information(basename, input_dir, annotations, threshold, patch_size) for basename in basenames]).reset_index(drop=True)
df.to_pickle(output_pkl)
#########
def create_zero_mask(npy_mask,in_zarr,in_pkl):
from scipy.sparse import csr_matrix, save_npz
arr,annotations_dict=load_dataset(in_zarr, in_pkl)
annotations_dict.update({'annotations':npy_mask})
#np.save(npy_mask, np.zeros(arr.shape[:-1]))
save_npz(file=npy_mask,matrix=csr_matrix(arr.shape[:-1]))
pickle.dump(annotations_dict,open(in_pkl,'wb'))
#########
def create_train_val_test(train_val_test_pkl, input_info_db, patch_size):
"""Create dataframe that splits slides into training validation and test.
Parameters
----------
train_val_test_pkl:str
Pickle for training validation and test slides.
input_info_db:str
Patch information SQL database.
patch_size:int
Patch size looking to access.
Returns
-------
dataframe
Train test validation splits.
"""
if os.path.exists(train_val_test_pkl):
IDs = pd.read_pickle(train_val_test_pkl)
else:
conn = sqlite3.connect(input_info_db)
df=pd.read_sql('select * from "{}";'.format(patch_size),con=conn)
conn.close()
IDs=df['ID'].unique()
IDs=pd.DataFrame(IDs,columns=['ID'])
IDs_train, IDs_test = train_test_split(IDs)
IDs_train, IDs_val = train_test_split(IDs_train)
IDs_train['set']='train'
IDs_val['set']='val'
IDs_test['set']='test'
IDs=pd.concat([IDs_train,IDs_val,IDs_test])
IDs.to_pickle(train_val_test_pkl)
return IDs
def modify_patch_info(input_info_db='patch_info.db', slide_labels=pd.DataFrame(), pos_annotation_class='', patch_size=224, segmentation=False, other_annotations=[], target_segmentation_class=-1, target_threshold=0., classify_annotations=False, modify_patches=False):
"""Modify the patch information to get ready for deep learning, incorporate whole slide labels if needed.
Parameters
----------
input_info_db:str
SQL DB file.
slide_labels:dataframe
Dataframe with whole slide labels.
pos_annotation_class:str
Tissue/annotation label to label with whole slide image label, if not supplied, any slide's patches receive the whole slide label.
patch_size:int
Patch size.
segmentation:bool
Segmentation?
other_annotations:list
Other annotations to access from patch information.
target_segmentation_class:int
Segmentation class to threshold.
target_threshold:float
Include patch if patch has target area greater than this.
classify_annotations:bool
Classifying annotations for pretraining, or final model?
Returns
-------
dataframe
Modified patch information.
"""
conn = sqlite3.connect(input_info_db)
df=pd.read_sql('select * from "{}";'.format(patch_size),con=conn)
conn.close()
#print(df)
df=df.drop_duplicates()
df=df.loc[np.isin(df['ID'],slide_labels.index)]
#print(classify_annotations)
if not segmentation:
if classify_annotations:
targets=df['annotation'].unique().tolist()
if len(targets)==1:
targets=list(df.iloc[:,5:])
else:
targets = list(slide_labels)
if type(pos_annotation_class)==type(''):
included_annotations = [pos_annotation_class]
else:
included_annotations = copy.deepcopy(pos_annotation_class)
included_annotations.extend(other_annotations)
print(df.shape,included_annotations)
if modify_patches:
df=df[np.isin(df['annotation'],included_annotations)]
for target in targets:
df[target]=0.
for slide in slide_labels.index:
slide_bool=((df['ID']==slide) & df[pos_annotation_class]>0.) if pos_annotation_class else (df['ID']==slide) # (df['annotation']==pos_annotation_class)
if slide_bool.sum():
for target in targets:
df.loc[slide_bool,target] = slide_labels.loc[slide,target]#.values#1.
df['area']=np.vectorize(lambda i: df.iloc[i][df.iloc[i]['annotation']])(np.arange(df.shape[0])) if modify_patches else 1.
if 'area' in list(df) and target_threshold>0.:
df=df.loc[df['area']>=target_threshold]
else:
df['target']=0.
if target_segmentation_class >=0:
df=df.loc[df[str(target_segmentation_class)]>=target_threshold]
print(df.shape)
return df
def npy2da(npy_file):
"""Numpy to dask array.
Parameters
----------
npy_file:str
Input npy file.
Returns
-------
dask.array
Converted numpy array to dask.
"""
if npy_file.endswith('.npy'):
if os.path.exists(npy_file):
arr=da.from_array(np.load(npy_file, mmap_mode = 'r+'))
else:
npy_file=npy_file.replace('.npy','.npz')
elif npy_file.endswith('.npz'):
from scipy.sparse import load_npz
arr=da.from_array(load_npz(npy_file).toarray())
elif npy_file.endswith('.h5'):
arr=da.from_array(h5py.File(npy_file, 'r')['dataset'])
return arr
def grab_interior_points(xml_file, img_size, annotations=[]):
"""Deprecated."""
interior_point_dict = {}
for annotation in annotations:
try:
interior_point_dict[annotation] = parse_coord_return_boxes(xml_file, annotation, return_coords = False) # boxes2interior(img_size,
except:
interior_point_dict[annotation] = []#np.array([[],[]])
return interior_point_dict
def boxes2interior(img_size, polygons):
"""Deprecated."""
img = Image.new('L', img_size, 0)
for polygon in polygons:
ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1)
mask = np.array(img).nonzero()
#mask = (np.ones(len(mask[0])),mask)
return mask
def parse_coord_return_boxes(xml_file, annotation_name = '', return_coords = False, transpose_annotations=False):
"""Get list of shapely objects for each annotation in the XML object.
Parameters
----------
xml_file:str
Annotation file.
annotation_name:str
Name of xml annotation.
return_coords:bool
Just return list of coords over shapes.
Returns
-------
list
List of shapely objects.
"""
boxes = []
if xml_file.endswith(".xml"):
xml_data = BeautifulSoup(open(xml_file),'html')
#print(xml_data.findAll('annotation'))
#print(xml_data.findAll('Annotation'))
for annotation in xml_data.findAll('annotation'):
if annotation['partofgroup'] == annotation_name:
for coordinates in annotation.findAll('coordinates'):
# FIXME may need to change x and y coordinates
coords = np.array([(coordinate['x'],coordinate['y']) for coordinate in coordinates.findAll('coordinate')])
if transpose_annotations:
coords=coords[:,::-1]
coords=coords.tolist()
if return_coords:
boxes.append(coords)
else:
boxes.append(Polygon(np.array(coords).astype(np.float)))
else:
annotations=pickle.load(open(xml_file,'rb')).get(annotation_name,[])#[annotation_name]
for annotation in annotations: