-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathcoupledLogisticMap.m
executable file
·189 lines (170 loc) · 8.92 KB
/
coupledLogisticMap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
%%
%% Java Information Dynamics Toolkit (JIDT)
%% Copyright (C) 2012, Joseph T. Lizier
%%
%% This program is free software: you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published by
%% the Free Software Foundation, either version 3 of the License, or
%% (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
%%
% Examine transfer entropy from variable X to Y for coupled logistic maps X and Y
% where the process is as defined in Example V.A of:
% Pompe and Runge, Momentary information transfer as a coupling measure of time series,
% PHYSICAL REVIEW E 83, 051122 (2011) :
% fmod1(x) := 4 .* (x mod 1) .* (1 - (x mod 1));
% gYToX = cYToX .* Y(t - delayYtoX) + (1-cYToX) .* X(t - 1);
% X(t) = fmod1(gYToX);
% gXToY = cXToY .* X(t - delayXtoY) + (1-cXToY) .* Y(t - 1);
% Y(t) = fmod1(gXToY);
%
% Specifically, we use delayYtoX = 5; and delayXtoY = 2; and check
% TE(X->Y, delay 1) and TE(X ->Y, delay 2), because Pompe and Runge reported
% that TE(X->Y, delay 1) was larger than TE(X ->Y, delay 2) despite the X -> Y
% coupling delay being 2.
% Their result appears to be a function of their measurement technique however
% (examing symbolic entropies, or the ordinal relationships between the variables).
% The main clue to this is that for their measure "momentary information transfer"
% (which conditions on the past of the source, in addition to the past of the
% destination), there is significantly non-zero information added by the source
% with lag 1, conditioned on the past of the source and the destination.
% Intuitively, their measure should be zero for lag 1, since that source variable
% should not be able to add any information about the destination (which is
% completely determined by its past and the source at lag 2).
% The source at lag 1 is only able to add information under their measure because
% it is estimated using ordinal values, and focussing on ordinals in the coupled
% logistic map process leaves uncertainty regarding the ordinal position of the
% next state of the destination given the ordinal relationships amongst its past
% and the source at lag 2. Some information regarding this uncertainty seems
% to be provided by the far past of the destination which is directly coupled to
% the source at lag 1 via a lag 5 relationship. This information is useful because
% of the memory in the destination variable.
% In a similar fashion, the transfer entropy at lag 1 contains much information
% about what the source causally added at lag 2 (because of strong memory in the
% source). But it also contains more information about the far past of Y (beyond
% the history or embedding length 1 used for the measure) which can be helpful
% to decode the process Y. If one is using ordinal relationships, it appears
% that this information is more strongly contained in the source at last 1.
%
% However, since we know that Y(t) is causally determined from X(t-2) and Y(t-1)
% then we know that a proper information theoretic characterisation should
% find more information in X(t-2) about Y(t) given Y(t-1) than from X(t-1).
% So here we make such a proper characterisation, using Kraskov estimation
% rather than ordinals, which lose much relevant information about the processes.
%
function coupledLogisticMap()
% Constants as set by Pompe and Runge:
delayYtoX = 5;
delayXtoY = 2;
cYToX = 0.2;
cXToY = 0.5;
T = 512;
fprintf('For 1000 repeats, expect the calculations to take ~30 seconds ...\n');
repeats = 1000; % General results visible for 100 repeats if you want to see them faster (~20 sec)
k = 1; % history length
% How many steps to randomly seed:
seedSteps = max([k,delayYtoX,delayXtoY]);
timeToKeep = T + seedSteps;
% Transients before capturing observations -
% Pompe and Runge don't state what they use;
% by playing with it, changing from 100 to 1000 has no discernable effect so we think this is long enough
transientRunsOfT = 100;
% The actual values of the results slightly change with the Kraskov K parameter,
% but we note that delay 2 is higher for K's we've tested
KraskovK ='4'; % Use Kraskov parameter K=4 for 4 nearest points
% For K=2 we get:
%TE(X->Y,delay=1) = 0.7773 nats (+/- std 0.0959, stderr 0.0096)
%TE(X->Y,delay=2) = 1.8759 nats (+/- std 0.0332, stderr 0.0033)
tic;
% Add utilities to the path
addpath('..');
% Assumes the jar is two levels up - change this if this is not the case
% Octave is happy to have the path added multiple times; I'm unsure if this is true for matlab
javaaddpath('../../../infodynamics.jar');
X = zeros(timeToKeep, repeats);
X(1:seedSteps,:) = rand(seedSteps,repeats);
Y = zeros(timeToKeep, repeats);
Y(1:seedSteps,:) = rand(seedSteps,repeats);
% Should run for some set up states to make sure we've reached stationarity:
for ts = 1 : transientRunsOfT
% Run the process for T time steps
if (ts > 1)
% We've just been running transients in X and Y, so copy the
% last seedSteps up into the first few rows:
X(1:seedSteps,:) = X(size(X,1)-seedSteps+1:size(X,1),:);
Y(1:seedSteps,:) = Y(size(Y,1)-seedSteps+1:size(Y,1),:);
end
% Now run the process from these initial states
for n = 1 : T
t = seedSteps + n;
gYToX = cYToX .* Y(t - delayYtoX,:) + (1-cYToX) .* X(t - 1,:);
X(t,:) = fmod1(gYToX);
gXToY = cXToY .* X(t - delayXtoY,:) + (1-cXToY) .* Y(t - 1,:);
Y(t,:) = fmod1(gXToY);
end
end
% And compute the results on the last T steps:
resultsLag1 = zeros(1,repeats);
resultsLag2 = zeros(1,repeats);
resultsLag3 = zeros(1,repeats);
for r = 1 : repeats
% Create a TE calculator and run it:
% (Our TE calculator is now using a single conditional MI calculator, so
% we replace the conditional MI calculator that was here before)
teCalc=javaObject('infodynamics.measures.continuous.kraskov.TransferEntropyCalculatorKraskov');
% Perform calculation for X -> Y (lag 1)
teCalc.initialise(k,1,1,1,1); % Use history length k (Schreiber k)
teCalc.setProperty('k', KraskovK);
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
resultsLag1(r) = teCalc.computeAverageLocalOfObservations();
% Perform calculation for X -> Y (lag 2)
teCalc.initialise(k,1,1,1,2); % Use history length k (Schreiber k)
teCalc.setProperty('k', KraskovK);
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
resultsLag2(r) = teCalc.computeAverageLocalOfObservations();
% Perform calculation for X -> Y (lag 3)
teCalc.initialise(k,1,1,1,3); % Use history length k (Schreiber k)
teCalc.setProperty('k', KraskovK);
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
resultsLag3(r) = teCalc.computeAverageLocalOfObservations();
% Kernel estimator returns the correct ordering of lag 1 and 2 for
% reasonably tight values of the kernel width (<~ 0.45 normalised units)
% At larger kernel widths, the ordering becomes incorrect - it seems that
% because larger kernel widths mean we have imprecision in observations that
% we are grouping together, then we start to see the same effect as we did with
% the symbolic coding!!
%teCalc=javaObject('infodynamics.measures.continuous.kernel.TransferEntropyCalculatorKernel');
%kernelWidth = '0.25'; % normalised units
%% Perform calculation for X -> Y (lag 1)
%teCalc.initialise(k); % Use history length k (Schreiber k)
%teCalc.setProperty('EPSILON', kernelWidth);
%teCalc.setObservations(X(seedSteps:size(X,1),r), Y(seedSteps:size(Y,1),r));
%resultsLag1(r) = teCalc.computeAverageLocalOfObservations();
%% Perform calculation for X -> Y (lag 2)
%teCalc.initialise(k); % Use history length k (Schreiber k)
%teCalc.setProperty('EPSILON', kernelWidth);
%teCalc.setObservations(X(seedSteps-1:size(X,1)-1,r), Y(seedSteps:size(Y,1),r));
%resultsLag2(r) = teCalc.computeAverageLocalOfObservations();
end
fprintf('TE(X->Y,delay=1) = %.4f nats (+/- std %.4f, stderr %.4f) or %.4f bits\n', ...
mean(resultsLag1), std(resultsLag1), std(resultsLag1)./sqrt(repeats), mean(resultsLag1)./log(2) );
fprintf('TE(X->Y,delay=2) = %.4f nats (+/- std %.4f, stderr %.4f) or %.4f bits\n', ...
mean(resultsLag2), std(resultsLag2), std(resultsLag2)./sqrt(repeats), mean(resultsLag2) ./log(2));
fprintf('TE(X->Y,delay=3) = %.4f nats (+/- std %.4f, stderr %.4f) or %.4f bits\n', ...
mean(resultsLag3), std(resultsLag3), std(resultsLag3)./sqrt(repeats), mean(resultsLag3) ./log(2));
toc;
end
function r = fmod1(x)
x = mod(x,1);
r = 4 .* x .* (1-x);
end