-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun_sim_var_calib.m
326 lines (223 loc) · 8.87 KB
/
run_sim_var_calib.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
clear;
addpath('../functions/');
% Monte Carlo study in larger-scale VAR(p) models
% calibrated to real empirical applications and data
% MPM 2020-11-20
%% Choose overall experiment
exper = 'gk'; % Either 'gk' (based on Gertler & Karadi, AEJ:Macro 2015)
% or 'kk' (based on Kilian & Murphy, RESTAT 2011)
%% Data used for calibration
data = struct;
switch exper
case 'gk' % Gertler & Karadi (AEJ:Macro 2015) data
data.file_var = '../data/gk/VAR_data.csv'; % VAR series
data.file_iv = '../data/gk/factor_data.csv'; % External instrument series
data.dat = innerjoin(readtable(data.file_var), readtable(data.file_iv)); % Load data
data.Y = data.dat{:,{'logcpi', 'logip', 'ff', 'ebp', 'ff4_tc'}}; % Variables in VAR
data.Y = data.Y(~any(isnan(data.Y),2),:); % Remove missing
case 'kk' % Similar to Kilian & Kim (RESTAT 2011)
data.file = '../data/data_sim.csv'; % VAR data file
data.dat = readtable(data.file); % Load data
cpi_log = 1200*log(data.dat.cpiaucsl); % Log CPI, annualized
realcom_log = 1200*log(data.dat.cmcrbind)-cpi_log; % Log real commodity price, annualized
data.Y = [data.dat{2:end,{'fedfunds', 'cfnai'}} cpi_log(2:end)-cpi_log(1:end-1) realcom_log(2:end)-realcom_log(1:end-1)]; % Variables in VAR
clearvars cpi_log realcom_log;
end
%% Monte Carlo simulation settings
sim = struct;
sim.numrep ...
= 2e3; % No. of repetitions
sim.rng_seed ...
= 202011281; % Random number seed
sim.num_workers ...
= 4; % No. of parallel workers
% (=0: run serial)
% Reporting
results_filename ...
= sprintf('%s%d', strcat('sim_var_calib_', exper)); % File name for storing results
%% Regression settings
settings = struct;
settings.p = 12; % Lag length used for estimation
% (excluding augmented lags)
settings.horzs ...
= 1:48; % Horizons of interest
switch exper
case 'gk'
settings.resp_vars = [1 2 4]; % Indices of response variables of interest
settings.innov = 5; % Index of innovation of interest
case 'kk'
settings.resp_vars = [2 3 4]; % Indices of response variables of interest
settings.innov = 1; % Index of innovation of interest
end
settings.no_const ...
= false; % true: omit intercept
settings.se_homosk = false;
settings.boot_num ...
= 2e3; % Number of bootstrap samples
settings.alpha ...
= 0.1; % Significance level
settings.har ....
= @(Y,bw) ewc(Y,bw); % HAR estimator
settings.har_bw ...
= @(T) round(0.4*T.^(2/3)); % HAR bandwidth
settings.har_cv ...
= @(bw) tinv(1-settings.alpha/2,bw); ...
% HAR critical value
%% List of specifications
specs = cell(2,1); % Specifications for the simulations
% VAR, lag-augmented
specs{1} = {'estimator', 'var',...
'lag_aug', true,...
'bootstrap', 'var', ...
'boot_lag_aug', true};
% LP, lag-augmented, bootstrap: VAR
specs{2} = {'estimator', 'lp',...
'lag_aug', true,...
'bootstrap', 'var'};
%% Estimate VAR in data
data.Y = detrend(data.Y,0); % Remove mean
[data.T,data.n] = size(data.Y); % Sample size
% Estimate VAR and true IRFs
[data.irs, ~, data.A, data.res] ...
= var_ir_estim(data.Y, settings.p, settings.p, settings.horzs, ...
false, false, false);
% Residual var-cov matrix
data.Sigma = (data.res'*data.res)/(size(data.res,1)-size(data.A,2));
% Display largest eigenvalues
data.A_comp ... % Companion matrix
= [data.A(:,1:end-1);
eye(data.n*(settings.p-1)) zeros(data.n*(settings.p-1),data.n)];
disp('Five largest VAR eigenvalues (absolute values)');
data.A_eig = eig(data.A_comp);
[data.A_eig_abs,I] = sort(abs(data.A_eig),'descend');
disp(data.A_eig_abs(1:5)');
data.A_eig = data.A_eig(I);
clearvars I;
%% Preliminaries
% True parameters
dgp = struct;
dgp.A = data.A(:,1:end-1);
dgp.Sigma = data.Sigma;
dgp.irs = data.irs;
dgp.n = data.n;
dgp.T = data.T;
rng(sim.rng_seed, 'twister'); % Set RNG seed
resp_vars = settings.resp_vars; % Indices of response variables
numvar ...
= length(settings.resp_vars); % No. of response variables
numhorz ...
= length(settings.horzs); % No. of horizons
numspec ...
= length(specs); % No. of regression specifications
numrep ...
= sim.numrep; % No. of repetitions
% Cell array of settings shared among all specifications
spec_shared = {'p', settings.p, ...
'innov', settings.innov, ...
'alpha', settings.alpha, ...
'no_const', settings.no_const, ...
'se_homosk', settings.se_homosk, ...
'boot_num', settings.boot_num, ...
'har_bw', settings.har_bw, ...
'har_cv', settings.har_cv};
%% Run simulations
estims ...
= zeros(numvar, numspec, numhorz, numrep);
% Initialize matrix for results
ses = estims;
cis_lower ...
= zeros(numvar, numspec, numhorz, 4, numrep);
% 4th index = type of CI:
% i) delta method,
% ii) Efron,
% iii) Hall,
% iv) Hall percentile-t
cis_upper = cis_lower;
if sim.num_workers > 0
poolobj = parpool(sim.num_workers);
% Start parallel workers
end
rand_seeds ...
= randi(2^32-1,1,numrep); % Random number seeds to be
% supplied to parallel workers
timer = tic; % Start timer
parfor(i=1:numrep, sim.num_workers) % For each repetition...
% for i=1:numrep
rng(rand_seeds(i), 'twister'); % Set RNG seed
% Simulate VAR(p) data
i_Y = var_sim(dgp.A, zeros(dgp.n,1), mvnrnd(zeros(1,dgp.n),dgp.Sigma,dgp.T), zeros(settings.p,dgp.n)); % Data series (with y_0=...=y_{1-p}=0)
i_estims ...
= zeros(numvar, numspec, numhorz);
i_ses ...
= i_estims;
i_cis_lower ...
= nan(numvar, numspec, numhorz, 4); % 4 refers to the 4 types of CIs
i_cis_upper ...
= i_cis_lower;
for i_var = 1:numvar % For each response variable of interest...
i_resp_var = resp_vars(i_var);
% Run all estimation procedures and compute delta method CIs
for j=1:numspec
% Estimate
[i_estims(i_var,j,:),...
i_ses(i_var,j,:), ...
i_cis_dm, ...
i_cis_boot] = ir_estim(i_Y, settings.p, settings.horzs, ...
'resp_var', i_resp_var, ...
spec_shared{:}, specs{j}{:});
% Delta method confidence interval
i_cis_lower(i_var,j,:,1) = i_cis_dm(1,:);
i_cis_upper(i_var,j,:,1) = i_cis_dm(2,:);
% Bootstrap confidence intervals
i_cis_lower(i_var,j,:,2:end) = i_cis_boot(1,:,:);
i_cis_upper(i_var,j,:,2:end) = i_cis_boot(2,:,:);
end
end
% Store all results for this repetition
estims(:,:,:,i) = i_estims;
ses(:,:,:,i) = i_ses;
cis_lower(:,:,:,:,i) = i_cis_lower;
cis_upper(:,:,:,:,i) = i_cis_upper;
if mod(i, ceil(numrep/50)) == 0
fprintf('%6d%s\n', round(i/numrep*100), '%');
end
end
sim.elapsed_time = toc(timer);
disp('Elapsed time (min):');
disp(sim.elapsed_time/60);
if sim.num_workers > 0
delete(poolobj); % Stop parallel workers
end
%% Compute coverage and median length
% Store results
results ...
= struct;
results.estims ...
= estims;
results.ses ...
= ses;
results.cis_lower ...
= cis_lower;
results.cis_upper ...
= cis_upper;
% Coverage
irs_true ...
= dgp.irs(settings.resp_vars,settings.innov,:);
results.cover_inds ...
= (irs_true >= results.cis_lower ...
& irs_true <= results.cis_upper) + 0;
% Coverage indicator (1 or 0)
results.cover_inds(isnan(results.cis_lower)) ...
= nan;
% Set indicator to missing if no CI is recorded
results.coverage_prob ...
= mean(results.cover_inds, 5);
% Coverage probability
% Length
results.lengths ...
= results.cis_upper-results.cis_lower; % Lengths
results.median_length ...
= median(results.lengths, 5); % Median length
%% Save results
status = mkdir('results');
save(strcat('results/',results_filename, '.mat'), 'exper', 'data', 'dgp', 'specs', 'settings', 'sim', 'results');