-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMOLS.py
144 lines (126 loc) · 3.91 KB
/
MOLS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from itertools import product
import copy
def solve_sudoku(grid):
# """ An efficient Sudoku solver using Algorithm X.
# R, C = size
N = len(grid)
X = ([("rc", rc) for rc in product(range(N), range(N))] +
[("rn", rn) for rn in product(range(N), range(1, N + 1))] +
[("cn", cn) for cn in product(range(N), range(1, N + 1))] )
Y = dict()
for r, c, n in product(range(N), range(N), range(1, N + 1)):
Y[(r, c, n)] = [
("rc", (r, c)),
("rn", (r, n)),
("cn", (c, n))]
X, Y = exact_cover(X, Y)
for i, row in enumerate(grid):
for j, n in enumerate(row):
if n:
select(X, Y, (i, j, n))
for solution in solve(X, Y, []):
for (r, c, n) in solution:
grid[r][c] = n
yield grid
def exact_cover(X, Y):
X = {j: set() for j in X}
for i, row in Y.items():
for j in row:
X[j].add(i)
return X, Y
def solve(X, Y, solution):
if not X:
yield list(solution)
else:
c = min(X, key=lambda c: len(X[c]))
for r in list(X[c]):
solution.append(r)
cols = select(X, Y, r)
for s in solve(X, Y, solution):
yield s
deselect(X, Y, r, cols)
solution.pop()
def select(X, Y, r):
cols = []
for j in Y[r]:
for i in X[j]:
for k in Y[i]:
if k != j:
X[k].remove(i)
cols.append(X.pop(j))
return cols
def deselect(X, Y, r, cols):
for j in reversed(Y[r]):
X[j] = cols.pop()
for i in X[j]:
for k in Y[i]:
if k != j:
X[k].add(i)
def IsOrthogonal(grid1,grid2):
SetOfOrderedPairs = set()
for i in range(len(grid1)):
for j in range(len(grid1)):
SetOfOrderedPairs.add((grid1[i][j],grid2[i][j]))
# print(grid1, grid2, SetOfOrderedPairs)
# for i in range(len(grid1)):
# print(grid1[i], grid2[i])
# print(SetOfOrderedPairs)
# print(grid2)
if len(SetOfOrderedPairs) != len(grid1)**2:
return False
else:
return True
def AreMutuallyOrthogonal(arrayOfarrays,testArray):
# print(arrayOfarrays, testArray)
# diagonal = set()
# for i in range(len(testArray)):
# diagonal.add(testArray[i][i])
# if len(diagonal) in [len(testArray),1]:
# idempotent = True
# else:
# idempotent = False
if len(arrayOfarrays) == 0:
# if idempotent == True:
# return True
# else:
# return False
return True
for i in arrayOfarrays:
# for j in range(len(i)):
# print(i[j], testArray[j])
# print('')
if IsOrthogonal(i,testArray) == False:
return False
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
grid = [
[1,2,3,4,5,6,7],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0],
[0,0,0,0,0,0,0]
]
numOfSoltns = 0
MutOrthLst = []
# print(type(solve_sudoku(grid)))
for solution in solve_sudoku(grid):
# print(MutOrthLst, solution, AreMutuallyOrthogonal(MutOrthLst, solution[:]))
# print(MutOrthLst, solution)
if AreMutuallyOrthogonal(MutOrthLst, solution[:]) == True:
MutOrthLst.append(copy.deepcopy(solution))
for i in solution:
print(i)
print('')
numOfSoltns += 1
# for s in solution:
# print(s)
# print('solution number', numOfSoltns)
# print('')
print('There are', numOfSoltns, 'solutions')
print(MutOrthLst, len(MutOrthLst))
# print(AreMutuallyOrthogonal([[[1, 2, 3], [3, 1, 2], [2, 3, 1]]], [[1, 2, 3],[2, 3, 1],[3, 1, 2]]))
# print(IsOrthogonal([[1, 2, 3], [3, 1, 2], [2, 3, 1]],[[1, 2, 3],[2, 3, 1],[3, 1, 2]]))