-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.m
75 lines (56 loc) · 2.07 KB
/
train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
% Solve a Pattern Recognition Problem with a Neural Network
rng('default');
load('x.mat');
load('y.mat');
inputs = x';
targets = y';
% Create a Pattern Recognition Network
hiddenLayerSize = 76;
net = patternnet(hiddenLayerSize);
% Choose Input and Output Pre/Post-Processing Functions
% For a list of all processing functions type: help nnprocess
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 80/100;
net.divideParam.testRatio = 20/100;
% For help on training function 'trainscg' type: help trainscg
% For a list of all training functions type: help nntrain
net.trainFcn = 'trainscg'; % Scaled conjugate gradient
% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse'; % Mean squared error
% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...
'plotregression', 'plotfit'};
net.efficiency.memoryReduction = 100;
net.trainParam.max_fail = 6;
net.trainParam.min_grad=1e-5;
net.trainParam.show=10;
net.trainParam.lr=0.9;
net.trainParam.epochs=1000;
net.trainParam.goal=0.00;
% Train the Network
[net,tr] = train(net,inputs,targets);
% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
% Recalculate Training, Validation and Test Performance
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
% View the Network
view(net)
disp('after training')
y1 = sim(net,inputs);
y1=abs(y1);
y1=round(y1);
save net net;