From 42dfae63312f443d13841a0c4a5de467f5c354c9 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Thu, 23 Nov 2023 19:43:09 -0500 Subject: [PATCH] Nodes to properly use the SDV img2vid checkpoint. The img2vid model is conditioned on clip vision output only which means there's no CLIP model which is why I added a ImageOnlyCheckpointLoader to load it. Note that the unClipCheckpointLoader can also load it because it also has a CLIP_VISION output. SDV_img2vid_Conditioning is the node used to pass the right conditioning to the img2vid model. VideoLinearCFGGuidance applies a linearly decreasing CFG scale to each video frame from the cfg set in the sampler node to min_cfg. SDV_img2vid_Conditioning can be found in conditioning->video_models ImageOnlyCheckpointLoader can be found in loaders->video_models VideoLinearCFGGuidance can be found in sampling->video_models --- comfy_extras/nodes_video_model.py | 89 +++++++++++++++++++++++++++++++ nodes.py | 1 + 2 files changed, 90 insertions(+) create mode 100644 comfy_extras/nodes_video_model.py diff --git a/comfy_extras/nodes_video_model.py b/comfy_extras/nodes_video_model.py new file mode 100644 index 00000000000..92bd883aebc --- /dev/null +++ b/comfy_extras/nodes_video_model.py @@ -0,0 +1,89 @@ +import nodes +import torch +import comfy.utils +import comfy.sd +import folder_paths + + +class ImageOnlyCheckpointLoader: + @classmethod + def INPUT_TYPES(s): + return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), + }} + RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE") + FUNCTION = "load_checkpoint" + + CATEGORY = "loaders/video_models" + + def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True): + ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) + out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings")) + return (out[0], out[3], out[2]) + + +class SDV_img2vid_Conditioning: + @classmethod + def INPUT_TYPES(s): + return {"required": { "clip_vision": ("CLIP_VISION",), + "init_image": ("IMAGE",), + "vae": ("VAE",), + "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}), + "video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}), + "motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}), + "fps": ("INT", {"default": 6, "min": 1, "max": 1024}), + "augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01}) + }} + RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") + RETURN_NAMES = ("positive", "negative", "latent") + + FUNCTION = "encode" + + CATEGORY = "conditioning/video_models" + + def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level): + output = clip_vision.encode_image(init_image) + pooled = output.image_embeds.unsqueeze(0) + pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1) + encode_pixels = pixels[:,:,:,:3] + if augmentation_level > 0: + encode_pixels += torch.randn_like(pixels) * augmentation_level + t = vae.encode(encode_pixels) + positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]] + negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]] + latent = torch.zeros([video_frames, 4, height // 8, width // 8]) + return (positive, negative, {"samples":latent}) + +class VideoLinearCFGGuidance: + @classmethod + def INPUT_TYPES(s): + return {"required": { "model": ("MODEL",), + "min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}), + }} + RETURN_TYPES = ("MODEL",) + FUNCTION = "patch" + + CATEGORY = "sampling/video_models" + + def patch(self, model, min_cfg): + def linear_cfg(args): + cond = args["cond"] + uncond = args["uncond"] + cond_scale = args["cond_scale"] + + scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1)) + return uncond + scale * (cond - uncond) + + m = model.clone() + m.set_model_sampler_cfg_function(linear_cfg) + return (m, ) + +NODE_CLASS_MAPPINGS = { + "ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader, + "SDV_img2vid_Conditioning": SDV_img2vid_Conditioning, + "VideoLinearCFGGuidance": VideoLinearCFGGuidance, +} + +NODE_DISPLAY_NAME_MAPPINGS = { + "ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)", +} diff --git a/nodes.py b/nodes.py index 2de468da709..bb24bc6e897 100644 --- a/nodes.py +++ b/nodes.py @@ -1850,6 +1850,7 @@ def init_custom_nodes(): "nodes_model_advanced.py", "nodes_model_downscale.py", "nodes_images.py", + "nodes_video_model.py", ] for node_file in extras_files: